Commit Graph

5188 Commits

Author SHA1 Message Date
Marcin Wątroba
51a3a86022
#11655 Add SQLAlchemyMd5Cache implementation (#11660)
- **Description:** Add SQLAlchemyMd5Cache implementation, 
  - **Issue:** the issue # #11655,
  - **Dependencies:** no deps,
  - **Tag maintainer:** @markowanga

---------

Co-authored-by: Marcin Wątroba <marcin.watroba@pwr.edu.pl>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-11 15:28:09 -07:00
Suresh Kumar Ponnusamy
70f7558db2
langchain-experimental: Add allow_list support in experimental/data_anonymizer (#11597)
- **Description:** Add allow_list support in langchain experimental
data-anonymizer package
  - **Issue:** no
  - **Dependencies:** no
  - **Tag maintainer:** @hwchase17
  - **Twitter handle:**
2023-10-11 14:50:41 -07:00
wemysschen
2363c02cf3
Bos loader (#11525)
**Description:**
Add  BaiduCloud BOS document loader.

---------

Co-authored-by: chenweixu01 <chenweixu01@baidu.com>
Co-authored-by: root <root@icoding-cwx.bcc-szzj.baidu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-11 14:43:48 -07:00
Kwanghoon Choi
fbb82608cd
Fixed a bug in reporting Python code validation (#11522)
- **Description:** fixed a bug in pal-chain when it reports Python
    code validation errors. When node.func does not have any ids, the
    original code tried to print node.func.id in raising ValueError.
- **Issue:** n/a,
- **Dependencies:** no dependencies,
- **Tag maintainer:** @hazzel-cn, @eyurtsev
- **Twitter handle:** @lazyswamp

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-11 14:34:28 -07:00
Harrison Chase
9f39c23a13
add input type for convo retrieval chain (#11679) 2023-10-11 17:13:48 -04:00
zhaozhiming
d5e762d328
fix: Change the docs of JSONAgentOutputParser (#11594)
I am merely making some minor adjustments to the function documentation.
I hope to provide a small assistance to LangChain.
- **Description:** Change the docs of JSONAgentOutputParser. It will be
`JSON` better,
  - **Issue:** no,
  - **Dependencies:** no,
  - **Tag maintainer:** @hwchase17,
  - **Twitter handle:** Not worth mentioning.
2023-10-11 14:05:53 -07:00
Shreyas S
3cd0827785
Update kay.ipynb (#11676)
Fixed title display
2023-10-11 14:02:11 -07:00
Vinay Kakade
dd0cd98861
Add support for ChatOpenAI models in Infino callback handler (#11608)
**Description:** This PR adds support for ChatOpenAI models in the
Infino callback handler. In particular, this PR implements
`on_chat_model_start` callback, so that ChatOpenAI models are supported.
With this change, Infino callback handler can be used to track latency,
errors, and prompt tokens for ChatOpenAI models too (in addition to the
support for OpenAI and other non-chat models it has today). The existing
example notebook is updated to show how to use this integration as well.
cc/ @naman-modi @savannahar68

**Issue:** https://github.com/langchain-ai/langchain/issues/11607 

**Dependencies:** None

**Tag maintainer:** @hwchase17 

**Twitter handle:** [@vkakade](https://twitter.com/vkakade)
2023-10-11 14:00:54 -07:00
Israel Ekpo
d0603c86b6
Add Support for Azure Cosmos DB MongoDB vCore Vector Store #11627 (#11632)
This PR adds support for the Azure Cosmos DB MongoDB vCore Vector Store

https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/

https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb/vcore/vector-search

Summary:
- **Description:** added vector store integration for Azure Cosmos DB
MongoDB vCore Vector Store,
  - **Issue:** the issue # it fixes #11627,
  - **Dependencies:** pymongo dependency,
  - **Tag maintainer:** @hwchase17,
  - **Twitter handle:** @izzyacademy

---------

Co-authored-by: Israel Ekpo <israel.ekpo@gmail.com>
Co-authored-by: Israel Ekpo <44282278+izzyacademy@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-11 13:56:46 -07:00
Erick Friis
28ee6a7c12
Track ChatFireworks time to first_token (#11672) 2023-10-11 13:37:03 -07:00
Erick Friis
2c1e735403
Fix runnable docs link (#11675) 2023-10-11 13:11:23 -07:00
Eugene Yurtsev
539941281d
Fix output types for BaseChatModel (#11670)
* Should use non chunked messages for Invoke/Batch
* After this PR, stream output type is not represented, do we want to
use the union?

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-11 16:02:03 -04:00
Ikko Eltociear Ashimine
7d0dda7e41
Fix typo in baidu_qianfan_endpoint.ipynb (#11667)
enviroment -> environment
2023-10-11 16:01:18 -04:00
Bagatur
cf86447623
Start cookbook and move stuff from use cases (#11636) 2023-10-11 12:27:13 -07:00
Eugene Yurtsev
99adcdb1c9
Add dedicated type attribute to be used solely for serialization purposes (#11585)
Adds standard `type` field for all messages that will be
serialized/validated by pydantic.

* The presence of `type` makes it easier for developers consuming
schemas to write client code to serialize/deserialize.
* In LangServe `type` will be used for both validation and will appear
in the generated openapi specs
2023-10-11 15:06:42 -04:00
eryk-dsai
06d5971be9
Fix issue #10985 - Skip model.to(device) if it is instantiated with bitsandbytes config (#11009)
Preventing error caused by attempting to move the model that was already
loaded on the GPU using the Accelerate module to the same or another
device. It is not possible to load model with Accelerate/PEFT to CPU for
now

Addresses:
[#10985](https://github.com/langchain-ai/langchain/issues/10985)
2023-10-11 09:28:27 -07:00
Nuno Campos
64969bc8ae
Add patch_config(configurable=) arg, make with_config(configurable=) merge it with existing (#11662)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-11 14:45:31 +01:00
Harrison Chase
ce0019b646
make utils conditional (#11646) 2023-10-11 06:11:32 +01:00
Harrison Chase
8f06085b24
make tools conditional (#11647) 2023-10-11 06:11:05 +01:00
Bassem Yacoube
5451b724fc
Adds support for llama2 and fixes MPT-7b url (#11465)
- **Description:** This is an update to OctoAI LLM provider that adds
support for llama2 endpoints hosted on OctoAI and updates MPT-7b url
with the current one.
@baskaryan
Thanks!

---------

Co-authored-by: ML Wiz <bassemgeorgi@gmail.com>
2023-10-10 20:34:35 -07:00
Todd Kerpelman
0bff399af1
Make metadata from the url_selenium loader match that of the web_base loader (#11617)
**Description:** I noticed the metadata returned by the url_selenium
loader was missing several values included by the web_base loader. (The
former returned `{source: ...}`, the latter returned `{source: ...,
title: ..., description: ..., language: ...}`.) This change fixes it so
both loaders return all 4 key value pairs.

Files have been properly formatted and all tests are passing. Note,
however, that I am not much of a python expert, so that whole "Adding
the imports inside the code so that tests pass" thing seems weird to me.
Please LMK if I did anything wrong.
2023-10-10 20:32:45 -07:00
Tarun Thotakura
c9d4d53545
Fixed the assignment of custom_llm_provider argument (#11628)
- **Description:** Assigning the custom_llm_provider to the default
params function so that it will be passed to the litellm
- **Issue:** Even though the custom_llm_provider argument is being
defined it's not being assigned anywhere in the code and hence its not
being passed to litellm, therefore any litellm call which uses the
custom_llm_provider as required parameter is being failed. This
parameter is mainly used by litellm when we are doing inference via
Custom API server.
https://docs.litellm.ai/docs/providers/custom_openai_proxy
  - **Dependencies:** No dependencies are required

@krrishdholakia , @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-10 20:29:24 -07:00
Leonid Ganeline
db67ccb0bb
docstrings cleanup (#11640)
Added missed docstrings. Some reformatting.
2023-10-10 19:56:47 -07:00
Bagatur
78b4c7d5a0
collapse sidebar peer items (#11639) 2023-10-10 19:56:21 -07:00
Bagatur
6dd7362a54
start cookbook (#11638) 2023-10-10 17:37:23 -07:00
Yang, Bo
3a82bd7bdb
Use raise from statement so that users can find detailed error message (#11461)
- **Description:** Use `raise from` statement so that users can find
detailed error message
  - **Tag maintainer:** @baskaryan, @eyurtsev, @hwchase17
2023-10-10 17:25:23 -07:00
Nuno Campos
9a0ed75a95
Add configurable fields with options (#11601)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-10 22:17:22 +01:00
Bagatur
0ca8d4449c
add ls guide redirect (#11623) 2023-10-10 12:58:04 -07:00
Bagatur
eedfddac2d
Restructure docs (#11620) 2023-10-10 12:55:19 -07:00
Bagatur
7232e082de
bump 312 (#11621) 2023-10-10 12:34:49 -07:00
Eugene Yurtsev
58220cda72
Remove LLM Bash and related bash utilities (#11619)
Deprecate LLMBash and related bash utilities
2023-10-10 14:54:09 -04:00
ElliotKetchup
683f4a93b9
Update azureml_chat_endpoint code exemple (#11602)
- **Description:** azureml_chat_endpoint code exemple now takes
endpoint_url and endpoint_api_key parameter into consideration,
  - **Issue:** None),
  - **Dependencies:** None,
  - **Tag maintainer:** None,
  - **Twitter handle:** @ElliotAlladaye
2023-10-10 10:27:28 -07:00
Yong woo Song
fca34eb122
Fix: invalid link to chat model in openai platform docs (#11609)
There is some invalid link in open ai platform
[docs](https://python.langchain.com/docs/integrations/platforms/openai).
So i fixed it to valid links.
- `/docs/integrations/chat_models/openai` ->
`/docs/integrations/chat/openai`
- `/docs/integrations/chat_models/azure_openai` ->
`/docs/integrations/chat/azure_chat_openai`

Thanks! ☺️
2023-10-10 10:22:39 -07:00
Shubham Kushwaha
49de862076
Arcee.ai LLM & Retriever integration (#11579)
- **Description:** This PR introduces a new LLM and Retriever API to
https://arcee.ai for the python client
  - **Issue:** implements the integrations as requested in #11578 ,
  - **Dependencies:** no dependencies are required,
  - **Tag maintainer:** @hwchase17
  - **Twitter handle:** shwooobham 


** `make format`, `make lint` and `make test` runs locally.**
```shell
=========== 1245 passed, 277 skipped, 20 warnings in 16.26s ===========
./scripts/check_pydantic.sh .
./scripts/check_imports.sh
poetry run ruff .
[ "." = "" ] || poetry run black . --check
All done!  🍰 
1818 files would be left unchanged.
[ "." = "" ] || poetry run mypy .
Success: no issues found in 1815 source files
[ "." = "" ] || poetry run black .
All done!  🍰 
1818 files left unchanged.
[ "." = "" ] || poetry run ruff --select I --fix .
poetry run codespell --toml pyproject.toml
poetry run codespell --toml pyproject.toml -w
```


**Contributions**
1. Arcee (langchain/llms), ArceeRetriever (langchain/retrievers),
ArceeWrapper (langchain/utilities)
2. docs for Arcee (llms/arcee.py) and
ArceeRetriever(retrievers/arcee.py)
3.

cc: @jacobsolawetz @ben-epstein

---------

Co-authored-by: Shubham <shubham@sORo.local>
2023-10-10 10:20:45 -07:00
Eugene Yurtsev
b6a2507794
Docs to use LLMSymbolicMath and LLMBash + utilities from experimental (#11614)
Update docs in lieu of:

https://github.com/langchain-ai/langchain/discussions/11352
2023-10-10 13:11:46 -04:00
Eugene Yurtsev
b56ca0c2a4
Deprecate LLMSymbolicMath from langchain core (#11615)
Deprecate LLMSymbolicMath from langchain core package.
2023-10-10 12:33:51 -04:00
Leonid Ganeline
59adeaddb3
docs: update dependents (#11502)
A regular update of dependents.
2023-10-10 09:31:23 -07:00
Eugene Yurtsev
c9bce5bbfb
Add version to langchain_experimental (#11613)
Add version to langchain experimental
2023-10-10 11:17:41 -04:00
Predrag Gruevski
22abeb9f6c
Disable loading jinja2 PromptTemplate from file. (#10252)
jinja2 templates are not sandboxed and are at risk for arbitrary code
execution. To mitigate this risk:
- We no longer support loading jinja2-formatted prompt template files.
- `PromptTemplate` with jinja2 may still be constructed manually, but
the class carries a security warning reminding the user to not pass
untrusted input into it.

Resolves #4394.
2023-10-10 11:15:42 -04:00
Bagatur
b642d00f9f
rm slack from community.md (#11610) 2023-10-10 07:55:26 -07:00
Nuno Campos
c7c03d4709
Fix mutation bugs in callback manager configure (#11603)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-10 14:50:18 +01:00
cccs-eric
e2a9072b80
Fix CohereRerank configuration (#11583)
**Description:** CohereRerank is missing `cohere_api_key` as a field and
since extras are forbidden, it is not possible to pass-in the key. The
only way is to use an env variable named `COHERE_API_KEY`.

For example, if trying to create a compressor like this:
```python
cohere_api_key = "......Cohere api key......"
compressor = CohereRerank(cohere_api_key=cohere_api_key)
```
you will get the following error:
```
  File "/langchain/.venv/lib/python3.10/site-packages/pydantic/v1/main.py", line 341, in __init__
    raise validation_error
pydantic.v1.error_wrappers.ValidationError: 1 validation error for CohereRerank
cohere_api_key
  extra fields not permitted (type=value_error.extra)
```
2023-10-09 23:26:34 -07:00
Anar
55fef4b64b
implemented add files method in LLMRails (#11518)
This PR provides add files method with LLMRails. Implemented here are:

docs/extras/integrations/vectorstores/llm-rails.ipynb

---------

Co-authored-by: Anar Aliyev <aaliyev@mgmt.cloudnet.services>
2023-10-09 16:29:43 -07:00
unifyh
fd7f129f10
Docs: Fix broken line breaks in snippets (#11523)
**Description:**
This PR fix some code snippets that have raw `\n`'s instead of actual
line breaks.

**Issue:**
Currently some snippets look like this:

![image](https://github.com/langchain-ai/langchain/assets/18213435/355b4911-38e9-4ba4-8570-f928557b6c13)

Affected pages:
-
https://python.langchain.com/docs/integrations/providers/predictionguard#example-usage
-
https://python.langchain.com/docs/modules/agents/how_to/custom_llm_agent#set-up-environment
-
https://python.langchain.com/docs/modules/chains/foundational/llm_chain#get-started
-
https://python.langchain.com/docs/integrations/providers/shaleprotocol#how-to

**Tag maintainer:**
@hwchase17
2023-10-09 15:40:27 -07:00
Stephen Hankinson
316dddc7cd
fix wording of query_sql_database_tool_description (#11530)
- **Description:** Fixes minor typo for the
query_sql_database_tool_description in the db toolkit
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Tag maintainer:** @nfcampos 
  - **Twitter handle:** N/A
2023-10-09 15:32:45 -07:00
Ash Vardanian
1acfe86353
Accelerating Math Utils with SimSIMD (#11566)
LangChain relies on NumPy to compute cosine distances, which becomes a
bottleneck with the growing dimensionality and number of embeddings. To
avoid this bottleneck, in our libraries at
[Unum](https://github.com/unum-cloud), we have created a specialized
package - [SimSIMD](https://github.com/ashvardanian/simsimd), that knows
how to use newer hardware capabilities. Compared to SciPy and NumPy, it
reaches 3x-200x performance for various data types. Since publication,
several LangChain users have asked me if I can integrate it into
LangChain to accelerate their workflows, so here I am 🤗

## Benchmarking

To conduct benchmarks locally, run this in your Jupyter:

```py
import numpy as np
import scipy as sp
import simsimd as simd
import timeit as tt

def cosine_similarity_np(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
    X_norm = np.linalg.norm(X, axis=1)
    Y_norm = np.linalg.norm(Y, axis=1)
    with np.errstate(divide="ignore", invalid="ignore"):
        similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
    similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
    return similarity

def cosine_similarity_sp(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
    return 1 - sp.spatial.distance.cdist(X, Y, metric='cosine')

def cosine_similarity_simd(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
    return 1 - simd.cdist(X, Y, metric='cosine')

X = np.random.randn(1, 1536).astype(np.float32)
Y = np.random.randn(1, 1536).astype(np.float32)
repeat = 1000

print("NumPy: {:,.0f} ops/s, SciPy: {:,.0f} ops/s, SimSIMD: {:,.0f} ops/s".format(
    repeat / tt.timeit(lambda: cosine_similarity_np(X, Y), number=repeat),
    repeat / tt.timeit(lambda: cosine_similarity_sp(X, Y), number=repeat),
    repeat / tt.timeit(lambda: cosine_similarity_simd(X, Y), number=repeat),
))
```

## Results

I ran this on an M2 Pro Macbook for various data types and different
number of rows in `X` and reformatted the results as a table for
readability:

| Data Type | NumPy | SciPy | SimSIMD |
| :--- | ---: | ---: | ---: |
| `f32, 1` | 59,114 ops/s | 80,330 ops/s | 475,351 ops/s |
| `f16, 1` | 32,880 ops/s | 82,420 ops/s | 650,177 ops/s |
| `i8, 1` | 47,916 ops/s | 115,084 ops/s | 866,958 ops/s |
| `f32, 10` | 40,135 ops/s | 24,305 ops/s | 185,373 ops/s |
| `f16, 10` | 7,041 ops/s | 17,596 ops/s | 192,058 ops/s |
| `f16, 10` | 21,989 ops/s | 25,064 ops/s | 619,131 ops/s |
| `f32, 100` | 3,536 ops/s | 3,094 ops/s | 24,206 ops/s |
| `f16, 100` | 900 ops/s | 2,014 ops/s | 23,364 ops/s |
| `i8, 100` | 5,510 ops/s | 3,214 ops/s | 143,922 ops/s |

It's important to note that SimSIMD will underperform if both matrices
are huge.
That, however, seems to be an uncommon usage pattern for LangChain
users.
You can find a much more detailed performance report for different
hardware models here:

- [Apple M2
Pro](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-1-performance-on-apple-m2-pro).
- [4th Gen Intel Xeon
Platinum](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-2-performance-on-4th-gen-intel-xeon-platinum-8480).
- [AWS Graviton
3](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-3-performance-on-aws-graviton-3).
  
## Additional Notes

1. Previous version used `X = np.array(X)`, to repackage lists of lists.
It's an anti-pattern, as it will use double-precision floating-point
numbers, which are slow on both CPUs and GPUs. I have replaced it with
`X = np.array(X, dtype=np.float32)`, but a more selective approach
should be discussed.
2. In numerical computations, it's recommended to explicitly define
tolerance levels, which were previously avoided in
`np.allclose(expected, actual)` calls. For now, I've set absolute
tolerance to distance computation errors as 0.01: `np.allclose(expected,
actual, atol=1e-2)`.

---

  - **Dependencies:** adds `simsimd` dependency
  - **Tag maintainer:** @hwchase17
  - **Twitter handle:** @ashvardanian

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-09 14:56:55 -07:00
benchello
5de64e6d60
Add option to specify metadata columns in CSV loader (#11576)
#### Description
This PR adds the option to specify additional metadata columns in the
CSVLoader beyond just `Source`.

The current CSV loader includes all columns in `page_content` and if we
want to have columns specified for `page_content` and `metadata` we have
to do something like the below.:
```
csv = pd.read_csv(
        "path_to_csv"
    ).to_dict("records")

documents = [
        Document(
            page_content=doc["content"],
            metadata={
                "last_modified_by": doc["last_modified_by"],
                "point_of_contact": doc["point_of_contact"],
            }
        ) for doc in csv
    ]
```
#### Usage
Example Usage:
```
csv_test  =  CSVLoader(
      file_path="path_to_csv", 
      metadata_columns=["last_modified_by", "point_of_contact"]
 )
```
Example CSV:
```
content, last_modified_by, point_of_contact
"hello world", "Person A", "Person B"
```

Example Result:
```
Document {
 page_content: "hello world"
 metadata: {
 row: '0',
 source: 'path_to_csv',
 last_modified_by: 'Person A',
 point_of_contact: 'Person B',
 }
```

---------

Co-authored-by: Ben Chello <bchello@dropbox.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-09 14:56:45 -07:00
Stephen Hankinson
447a523662
fix comments in output format (#11536)
- **Description:** Fixes the comments in the ConvoOutputParser. Because
the \\\\ is escaping a single \\, they render something like:
`"action_input": string \ The input to the action` in the prompt.
Changing this to \\\\\\\\ lets it escape two slashes so that it renders
a proper comment: `"action_input": string \\ The input to the action`
  - **Issue:** N/A
  - **Dependencies:** 
  - **Tag maintainer:** @hwchase17
  - **Twitter handle:**
2023-10-09 14:55:44 -07:00
Michael Landis
8e45f720a8
feat: add momento vector index as a vector store provider (#11567)
**Description**:

- Added Momento Vector Index (MVI) as a vector store provider. This
includes an implementation with docstrings, integration tests, a
notebook, and documentation on the docs pages.
- Updated the Momento dependency in pyproject.toml and the lock file to
enable access to MVI.
- Refactored the Momento cache and chat history session store to prefer
using "MOMENTO_API_KEY" over "MOMENTO_AUTH_TOKEN" for consistency with
MVI. This change is backwards compatible with the previous "auth_token"
variable usage. Updated the code and tests accordingly.

**Dependencies**:

- Updated Momento dependency in pyproject.toml.

**Testing**:

- Run the integration tests with a Momento API key. Get one at the
[Momento Console](https://console.gomomento.com) for free. MVI is
available in AWS us-west-2 with a superuser key.
- `MOMENTO_API_KEY=<your key> poetry run pytest
tests/integration_tests/vectorstores/test_momento_vector_index.py`

**Tag maintainer:**

@eyurtsev

**Twitter handle**:

Please mention @momentohq for this addition to langchain. With the
integration of Momento Vector Index, Momento caching, and session store,
Momento provides serverless support for the core langchain data needs.

Also mention @mlonml for the integration.
2023-10-09 14:02:59 -07:00
Eugene Yurtsev
ca2eed36b7
LangChain cli fix a few bugs (#11573)
Code was assuming that `git` and `poetry` exist. In addition, it was not
ignoring pycache files that get generated during run time
2023-10-09 13:30:16 -07:00