- **PR title**: "community: Fix#22975 (Add SSL Verification Option to
Requests Class in langchain_community)"
- **PR message**:
- **Description:**
- Added an optional verify parameter to the Requests class with a
default value of True.
- Modified the get, post, patch, put, and delete methods to include the
verify parameter.
- Updated the _arequest async context manager to include the verify
parameter.
- Added the verify parameter to the GenericRequestsWrapper class and
passed it to the Requests class.
- **Issue:** This PR fixes issue #22975.
- **Dependencies:** No additional dependencies are required for this
change.
- **Twitter handle:** @lunara_x
You can check this change with below code.
```python
from langchain_openai.chat_models import ChatOpenAI
from langchain.requests import RequestsWrapper
from langchain_community.agent_toolkits.openapi import planner
from langchain_community.agent_toolkits.openapi.spec import reduce_openapi_spec
with open("swagger.yaml") as f:
data = yaml.load(f, Loader=yaml.FullLoader)
swagger_api_spec = reduce_openapi_spec(data)
llm = ChatOpenAI(model='gpt-4o')
swagger_requests_wrapper = RequestsWrapper(verify=False) # modified point
superset_agent = planner.create_openapi_agent(swagger_api_spec, swagger_requests_wrapper, llm, allow_dangerous_requests=True, handle_parsing_errors=True)
superset_agent.run(
"Tell me the number and types of charts and dashboards available."
)
```
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
## Description
While `YouRetriever` supports both You.com's Search and News APIs, news
is supported as an afterthought.
More specifically, not all of the News API parameters are exposed for
the user, only those that happen to overlap with the Search API.
This PR:
- improves support for both APIs, exposing the remaining News API
parameters while retaining backward compatibility
- refactor some REST parameter generation logic
- updates the docstring of `YouSearchAPIWrapper`
- add input validation and warnings to ensure parameters are properly
set by user
- 🚨 Breaking: Limit the news results to `k` items
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Remove the REPL from community, and suggest an alternative import from
langchain_experimental.
Fix for this issue:
https://github.com/langchain-ai/langchain/issues/14345
This is not a bug in the code or an actual security risk. The python
REPL itself is behaving as expected.
The PR is done to appease blanket security policies that are just
looking for the presence of exec in the code.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description**
sqlalchemy uses "sqlalchemy.engine.URL" type for db uri argument.
Added 'URL' type for compatibility.
**Issue**: None
**Dependencies:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR add supports for Azure Cosmos DB for NoSQL vector store.
Summary:
Description: added vector store integration for Azure Cosmos DB for
NoSQL Vector Store,
Dependencies: azure-cosmos dependency,
Tag maintainer: @hwchase17, @baskaryan @efriis @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** The `ApifyWrapper` class expects `apify_api_token` to
be passed as a named parameter or set as an environment variable. But
the corresponding field was missing in the class definition causing the
argument to be ignored when passed as a named param. This patch fixes
that.
We add a tool and retriever for the [AskNews](https://asknews.app)
platform with example notebooks.
The retriever can be invoked with:
```py
from langchain_community.retrievers import AskNewsRetriever
retriever = AskNewsRetriever(k=3)
retriever.invoke("impact of fed policy on the tech sector")
```
To retrieve 3 documents in then news related to fed policy impacts on
the tech sector. The included notebook also includes deeper details
about controlling filters such as category and time, as well as
including the retriever in a chain.
The tool is quite interesting, as it allows the agent to decide how to
obtain the news by forming a query and deciding how far back in time to
look for the news:
```py
from langchain_community.tools.asknews import AskNewsSearch
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain_openai import ChatOpenAI
tool = AskNewsSearch()
instructions = """You are an assistant."""
base_prompt = hub.pull("langchain-ai/openai-functions-template")
prompt = base_prompt.partial(instructions=instructions)
llm = ChatOpenAI(temperature=0)
asknews_tool = AskNewsSearch()
tools = [asknews_tool]
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
)
agent_executor.invoke({"input": "How is the tech sector being affected by fed policy?"})
```
---------
Co-authored-by: Emre <e@emre.pm>
**Description:** Add `Origin/langchain` to Apify's client's user-agent
to attribute API activity to LangChain (at Apify, we aim to monitor our
integrations to evaluate whether we should invest more in the LangChain
integration regarding functionality and content)
**Issue:** None
**Dependencies:** None
**Twitter handle:** None
Description: This PR includes fix for loader_source to be fetched from
metadata in case of GdriveLoaders.
Documentation: NA
Unit Test: NA
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Thank you for contributing to LangChain!
- Oracle AI Vector Search
Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
- Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
This Pull Requests Adds the following functionalities
Oracle AI Vector Search : Vector Store
Oracle AI Vector Search : Document Loader
Oracle AI Vector Search : Document Splitter
Oracle AI Vector Search : Summary
Oracle AI Vector Search : Oracle Embeddings
- We have added unit tests and have our own local unit test suite which
verifies all the code is correct. We have made sure to add guides for
each of the components and one end to end guide that shows how the
entire thing runs.
- We have made sure that make format and make lint run clean.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: skmishraoracle <shailendra.mishra@oracle.com>
Co-authored-by: hroyofc <harichandan.roy@oracle.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
* Introduce individual `fetch_` methods for easier typing.
* Rework some docstrings to google style
* Move some logic to the tool
* Merge the 2 cassandra utility files
**Description:**
This pull request introduces a new feature for LangChain: the
integration with the Rememberizer API through a custom retriever.
This enables LangChain applications to allow users to load and sync
their data from Dropbox, Google Drive, Slack, their hard drive into a
vector database that LangChain can query. Queries involve sending text
chunks generated within LangChain and retrieving a collection of
semantically relevant user data for inclusion in LLM prompts.
User knowledge dramatically improved AI applications.
The Rememberizer integration will also allow users to access general
purpose vectorized data such as Reddit channel discussions and US
patents.
**Issue:**
N/A
**Dependencies:**
N/A
**Twitter handle:**
https://twitter.com/Rememberizer
### Description:
When attempting to download PDF files from arXiv, an unexpected 404
error frequently occurs. This error halts the operation, regardless of
whether there are additional documents to process. As a solution, I
suggest implementing a mechanism to ignore and communicate this error
and continue processing the next document from the list.
Proposed Solution: To address the issue of unexpected 404 errors during
PDF downloads from arXiv, I propose implementing the following solution:
- Error Handling: Implement error handling mechanisms to catch and
handle 404 errors gracefully.
- Communication: Inform the user or logging system about the occurrence
of the 404 error.
- Continued Processing: After encountering a 404 error, continue
processing the remaining documents from the list without interruption.
This solution ensures that the application can handle unexpected errors
without terminating the entire operation. It promotes resilience and
robustness in the face of intermittent issues encountered during PDF
downloads from arXiv.
### Issue:
#20909
### Dependencies:
none
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
## Summary
I ran `ruff check --extend-select RUF100 -n` to identify `# noqa`
comments that weren't having any effect in Ruff, and then `ruff check
--extend-select RUF100 -n --fix` on select files to remove all of the
unnecessary `# noqa: F401` violations. It's possible that these were
needed at some point in the past, but they're not necessary in Ruff
v0.1.15 (used by LangChain) or in the latest release.
Co-authored-by: Erick Friis <erick@langchain.dev>
…/17690
Thank you for contributing to LangChain!
- [x] **Fix Google Lens knowledge graph issue**: "langchain: community"
- Fix for [No "knowledge_graph" property in Google Lens API call from
SerpAPI](https://github.com/langchain-ai/langchain/issues/17690)
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** handled the existence of keys in the json response of
Google Lens
- **Issue:** [No "knowledge_graph" property in Google Lens API call from
SerpAPI](https://github.com/langchain-ai/langchain/issues/17690)
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description**: ToolKit and Tools for accessing data in a Cassandra
Database primarily for Agent integration. Initially, this includes the
following tools:
- `cassandra_db_schema` Gathers all schema information for the connected
database or a specific schema. Critical for the agent when determining
actions.
- `cassandra_db_select_table_data` Selects data from a specific keyspace
and table. The agent can pass paramaters for a predicate and limits on
the number of returned records.
- `cassandra_db_query` Expiriemental alternative to
`cassandra_db_select_table_data` which takes a query string completely
formed by the agent instead of parameters. May be removed in future
versions.
Includes unit test and two notebooks to demonstrate usage.
**Dependencies**: cassio
**Twitter handle**: @PatrickMcFadin
---------
Co-authored-by: Phil Miesle <phil.miesle@datastax.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** This pull request introduces a new feature to community
tools, enhancing its search capabilities by integrating the Mojeek
search engine
**Dependencies:** None
---------
Co-authored-by: Igor Brai <igor@mojeek.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Issue: When the third-party package is not installed, whenever we need
to `pip install <package>` the ImportError is raised.
But sometimes, the `ValueError` or `ModuleNotFoundError` is raised. It
is bad for consistency.
Change: replaced the `ValueError` or `ModuleNotFoundError` with
`ImportError` when we raise an error with the `pip install <package>`
message.
Note: Ideally, we replace all `try: import... except... raise ... `with
helper functions like `import_aim` or just use the existing
[langchain_core.utils.utils.guard_import](https://api.python.langchain.com/en/latest/utils/langchain_core.utils.utils.guard_import.html#langchain_core.utils.utils.guard_import)
But it would be much bigger refactoring. @baskaryan Please, advice on
this.
Description: The PebbloSafeLoader should first check for owner,
full_path and size in metadata before implementing its own logic.
Dependencies: None
Documentation: NA.
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Description: Add support for Semantic topics and entities.
Classification done by pebblo-server is not used to enhance metadata of
Documents loaded by document loaders.
Dependencies: None
Documentation: Updated.
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code.
See #20050 as a template for this PR.
- As a byproduct: Added 3 missed `test_imports`.
- Added missed `SolarChat` in to __init___.py Added it into test_import
ut.
- Added `# type: ignore` to fix linting. It is not clear, why linting
errors appear after ^ changes.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
[Dria](https://dria.co/) is a hub of public RAG models for developers to
both contribute and utilize a shared embedding lake. This PR adds a
retriever that can retrieve documents from Dria.
### Description
This implementation adds functionality from the AlphaVantage API,
renowned for its comprehensive financial data. The class encapsulates
various methods, each dedicated to fetching specific types of financial
information from the API.
### Implemented Functions
- **`search_symbols`**:
- Searches the AlphaVantage API for financial symbols using the provided
keywords.
- **`_get_market_news_sentiment`**:
- Retrieves market news sentiment for a specified stock symbol from the
AlphaVantage API.
- **`_get_time_series_daily`**:
- Fetches daily time series data for a specific symbol from the
AlphaVantage API.
- **`_get_quote_endpoint`**:
- Obtains the latest price and volume information for a given symbol
from the AlphaVantage API.
- **`_get_time_series_weekly`**:
- Gathers weekly time series data for a particular symbol from the
AlphaVantage API.
- **`_get_top_gainers_losers`**:
- Provides details on top gainers, losers, and most actively traded
tickers in the US market from the AlphaVantage API.
### Issue:
- #11994
### Dependencies:
- 'requests' library for HTTP requests. (import requests)
- 'pytest' library for testing. (import pytest)
---------
Co-authored-by: Adam Badar <94140103+adam-badar@users.noreply.github.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
PebbloSafeLoader: Add support for non-file-based Document Loaders
This pull request enhances PebbloSafeLoader by introducing support for
several non-file-based Document Loaders. With this update,
PebbloSafeLoader now seamlessly integrates with the following loaders:
- GoogleDriveLoader
- SlackDirectoryLoader
- Unstructured EmailLoader
**Issue:** NA
**Dependencies:** - None
**Twitter handle:** @Raj__725
---------
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
## Add Passio Nutrition AI Food Search Tool to Community Package
### Description
We propose adding a new tool to the `community` package, enabling
integration with Passio Nutrition AI for food search functionality. This
tool will provide a simple interface for retrieving nutrition facts
through the Passio Nutrition AI API, simplifying user access to
nutrition data based on food search queries.
### Implementation Details
- **Class Structure:** Implement `NutritionAI`, extending `BaseTool`. It
includes an `_run` method that accepts a query string and, optionally, a
`CallbackManagerForToolRun`.
- **API Integration:** Use `NutritionAIAPI` for the API wrapper,
encapsulating all interactions with the Passio Nutrition AI and
providing a clean API interface.
- **Error Handling:** Implement comprehensive error handling for API
request failures.
### Expected Outcome
- **User Benefits:** Enable easy querying of nutrition facts from Passio
Nutrition AI, enhancing the utility of the `langchain_community` package
for nutrition-related projects.
- **Functionality:** Provide a straightforward method for integrating
nutrition information retrieval into users' applications.
### Dependencies
- `langchain_core` for base tooling support
- `pydantic` for data validation and settings management
- Consider `requests` or another HTTP client library if not covered by
`NutritionAIAPI`.
### Tests and Documentation
- **Unit Tests:** Include tests that mock network interactions to ensure
tool reliability without external API dependency.
- **Documentation:** Create an example notebook in
`docs/docs/integrations/tools/passio_nutrition_ai.ipynb` showing usage,
setup, and example queries.
### Contribution Guidelines Compliance
- Adhere to the project's linting and formatting standards (`make
format`, `make lint`, `make test`).
- Ensure compliance with LangChain's contribution guidelines,
particularly around dependency management and package modifications.
### Additional Notes
- Aim for the tool to be a lightweight, focused addition, not
introducing significant new dependencies or complexity.
- Potential future enhancements could include caching for common queries
to improve performance.
### Twitter Handle
- Here is our Passio AI [twitter handle](https://twitter.com/@passio_ai)
where we announce our products.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
For some DBs with lots of tables, reflection of all the tables can take
very long. So this change will make the tables be reflected lazily when
get_table_info() is called and `lazy_table_reflection` is True.
- **Description:** finishes adding the you.com functionality including:
- add async functions to utility and retriever
- add the You.com Tool
- add async testing for utility, retriever, and tool
- add a tool integration notebook page
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** @scottnath