Commit Graph

30 Commits

Author SHA1 Message Date
Eugene Yurtsev
b9f65e5038
experimental[patch]: Migrate pydantic extra to literals (#25194)
Migrate pydantic extra to literals

Upgrade to using a literal for specifying the extra which is the
recommended approach in pydantic 2.

This works correctly also in pydantic v1.

```python
from pydantic.v1 import BaseModel

class Foo(BaseModel, extra="forbid"):
    x: int

Foo(x=5, y=1)
```

And 


```python
from pydantic.v1 import BaseModel

class Foo(BaseModel):
    x: int

    class Config:
      extra = "forbid"

Foo(x=5, y=1)
```


## Enum -> literal using grit pattern:

```
engine marzano(0.1)
language python
or {
    `extra=Extra.allow` => `extra="allow"`,
    `extra=Extra.forbid` => `extra="forbid"`,
    `extra=Extra.ignore` => `extra="ignore"`
}
```

Resorted attributes in config and removed doc-string in case we will
need to deal with going back and forth between pydantic v1 and v2 during
the 0.3 release. (This will reduce merge conflicts.)


## Sort attributes in Config:

```
engine marzano(0.1)
language python


function sort($values) js {
    return $values.text.split(',').sort().join("\n");
}


class_definition($name, $body) as $C where {
    $name <: `Config`,
    $body <: block($statements),
    $values = [],
    $statements <: some bubble($values) assignment() as $A where {
        $values += $A
    },
    $body => sort($values),
}

```
2024-08-08 19:05:54 +00:00
Bagatur
a0c2281540
infra: update mypy 1.10, ruff 0.5 (#23721)
```python
"""python scripts/update_mypy_ruff.py"""
import glob
import tomllib
from pathlib import Path

import toml
import subprocess
import re

ROOT_DIR = Path(__file__).parents[1]


def main():
    for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True):
        print(path)
        with open(path, "rb") as f:
            pyproject = tomllib.load(f)
        try:
            pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = (
                "^1.10"
            )
            pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = (
                "^0.5"
            )
        except KeyError:
            continue
        with open(path, "w") as f:
            toml.dump(pyproject, f)
        cwd = "/".join(path.split("/")[:-1])
        completed = subprocess.run(
            "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )
        logs = completed.stdout.split("\n")

        to_ignore = {}
        for l in logs:
            if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l):
                path, line_no, error_type = re.match(
                    "^(.*)\:(\d+)\: error:.*\[(.*)\]", l
                ).groups()
                if (path, line_no) in to_ignore:
                    to_ignore[(path, line_no)].append(error_type)
                else:
                    to_ignore[(path, line_no)] = [error_type]
        print(len(to_ignore))
        for (error_path, line_no), error_types in to_ignore.items():
            all_errors = ", ".join(error_types)
            full_path = f"{cwd}/{error_path}"
            try:
                with open(full_path, "r") as f:
                    file_lines = f.readlines()
            except FileNotFoundError:
                continue
            file_lines[int(line_no) - 1] = (
                file_lines[int(line_no) - 1][:-1] + f"  # type: ignore[{all_errors}]\n"
            )
            with open(full_path, "w") as f:
                f.write("".join(file_lines))

        subprocess.run(
            "poetry run ruff format .; poetry run ruff --select I --fix .",
            cwd=cwd,
            shell=True,
            capture_output=True,
            text=True,
        )


if __name__ == "__main__":
    main()

```
2024-07-03 10:33:27 -07:00
mochi
63284ffebf
experimental[patch], docs: refine notebook for MyScale SelfQueryRetriever (#22016)
- **Description:** upgrade model to `gpt-4o`
2024-05-22 21:49:01 +00:00
Leonid Ganeline
95dc90609e
experimental[patch]: prompts import fix (#20534)
Replaced `from langchain.prompts` with `from langchain_core.prompts`
where it is appropriate.
Most of the changes go to `langchain_experimental`
Similar to #20348
2024-04-18 16:09:11 -04:00
Leonid Ganeline
e512d3c6a6
langchain: callbacks imports fix (#20348)
Replaced all `from langchain.callbacks` into `from
langchain_core.callbacks` .
Changes in the `langchain` and `langchain_experimental`

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-12 20:13:14 +00:00
Kirushikesh DB
12861273e1
experimental[patch]: Removed 'SQLResults:' from the LLMResponse in SQLDatabaseChain (#17104)
**Description:** 
When using the SQLDatabaseChain with Llama2-70b LLM and, SQLite
database. I was getting `Warning: You can only execute one statement at
a time.`.

```
from langchain.sql_database import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain

sql_database_path = '/dccstor/mmdataretrieval/mm_dataset/swimming_record/rag_data/swimmingdataset.db'
sql_db = get_database(sql_database_path)
db_chain = SQLDatabaseChain.from_llm(mistral, sql_db, verbose=True, callbacks = [callback_obj])
db_chain.invoke({
    "query": "What is the best time of Lance Larson in men's 100 meter butterfly competition?"
})
```
Error:
```
Warning                                   Traceback (most recent call last)
Cell In[31], line 3
      1 import langchain
      2 langchain.debug=False
----> 3 db_chain.invoke({
      4     "query": "What is the best time of Lance Larson in men's 100 meter butterfly competition?"
      5 })

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain/chains/base.py:162, in Chain.invoke(self, input, config, **kwargs)
    160 except BaseException as e:
    161     run_manager.on_chain_error(e)
--> 162     raise e
    163 run_manager.on_chain_end(outputs)
    164 final_outputs: Dict[str, Any] = self.prep_outputs(
    165     inputs, outputs, return_only_outputs
    166 )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain/chains/base.py:156, in Chain.invoke(self, input, config, **kwargs)
    149 run_manager = callback_manager.on_chain_start(
    150     dumpd(self),
    151     inputs,
    152     name=run_name,
    153 )
    154 try:
    155     outputs = (
--> 156         self._call(inputs, run_manager=run_manager)
    157         if new_arg_supported
    158         else self._call(inputs)
    159     )
    160 except BaseException as e:
    161     run_manager.on_chain_error(e)

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_experimental/sql/base.py:198, in SQLDatabaseChain._call(self, inputs, run_manager)
    194 except Exception as exc:
    195     # Append intermediate steps to exception, to aid in logging and later
    196     # improvement of few shot prompt seeds
    197     exc.intermediate_steps = intermediate_steps  # type: ignore
--> 198     raise exc

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_experimental/sql/base.py:143, in SQLDatabaseChain._call(self, inputs, run_manager)
    139     intermediate_steps.append(
    140         sql_cmd
    141     )  # output: sql generation (no checker)
    142     intermediate_steps.append({"sql_cmd": sql_cmd})  # input: sql exec
--> 143     result = self.database.run(sql_cmd)
    144     intermediate_steps.append(str(result))  # output: sql exec
    145 else:

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_community/utilities/sql_database.py:436, in SQLDatabase.run(self, command, fetch, include_columns)
    425 def run(
    426     self,
    427     command: str,
    428     fetch: Literal["all", "one"] = "all",
    429     include_columns: bool = False,
    430 ) -> str:
    431     """Execute a SQL command and return a string representing the results.
    432 
    433     If the statement returns rows, a string of the results is returned.
    434     If the statement returns no rows, an empty string is returned.
    435     """
--> 436     result = self._execute(command, fetch)
    438     res = [
    439         {
    440             column: truncate_word(value, length=self._max_string_length)
   (...)
    443         for r in result
    444     ]
    446     if not include_columns:

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_community/utilities/sql_database.py:413, in SQLDatabase._execute(self, command, fetch)
    410     elif self.dialect == "postgresql":  # postgresql
    411         connection.exec_driver_sql("SET search_path TO %s", (self._schema,))
--> 413 cursor = connection.execute(text(command))
    414 if cursor.returns_rows:
    415     if fetch == "all":

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1416, in Connection.execute(self, statement, parameters, execution_options)
   1414     raise exc.ObjectNotExecutableError(statement) from err
   1415 else:
-> 1416     return meth(
   1417         self,
   1418         distilled_parameters,
   1419         execution_options or NO_OPTIONS,
   1420     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/sql/elements.py:516, in ClauseElement._execute_on_connection(self, connection, distilled_params, execution_options)
    514     if TYPE_CHECKING:
    515         assert isinstance(self, Executable)
--> 516     return connection._execute_clauseelement(
    517         self, distilled_params, execution_options
    518     )
    519 else:
    520     raise exc.ObjectNotExecutableError(self)

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1639, in Connection._execute_clauseelement(self, elem, distilled_parameters, execution_options)
   1627 compiled_cache: Optional[CompiledCacheType] = execution_options.get(
   1628     "compiled_cache", self.engine._compiled_cache
   1629 )
   1631 compiled_sql, extracted_params, cache_hit = elem._compile_w_cache(
   1632     dialect=dialect,
   1633     compiled_cache=compiled_cache,
   (...)
   1637     linting=self.dialect.compiler_linting | compiler.WARN_LINTING,
   1638 )
-> 1639 ret = self._execute_context(
   1640     dialect,
   1641     dialect.execution_ctx_cls._init_compiled,
   1642     compiled_sql,
   1643     distilled_parameters,
   1644     execution_options,
   1645     compiled_sql,
   1646     distilled_parameters,
   1647     elem,
   1648     extracted_params,
   1649     cache_hit=cache_hit,
   1650 )
   1651 if has_events:
   1652     self.dispatch.after_execute(
   1653         self,
   1654         elem,
   (...)
   1658         ret,
   1659     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1848, in Connection._execute_context(self, dialect, constructor, statement, parameters, execution_options, *args, **kw)
   1843     return self._exec_insertmany_context(
   1844         dialect,
   1845         context,
   1846     )
   1847 else:
-> 1848     return self._exec_single_context(
   1849         dialect, context, statement, parameters
   1850     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1988, in Connection._exec_single_context(self, dialect, context, statement, parameters)
   1985     result = context._setup_result_proxy()
   1987 except BaseException as e:
-> 1988     self._handle_dbapi_exception(
   1989         e, str_statement, effective_parameters, cursor, context
   1990     )
   1992 return result

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:2346, in Connection._handle_dbapi_exception(self, e, statement, parameters, cursor, context, is_sub_exec)
   2344     else:
   2345         assert exc_info[1] is not None
-> 2346         raise exc_info[1].with_traceback(exc_info[2])
   2347 finally:
   2348     del self._reentrant_error

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1969, in Connection._exec_single_context(self, dialect, context, statement, parameters)
   1967                 break
   1968     if not evt_handled:
-> 1969         self.dialect.do_execute(
   1970             cursor, str_statement, effective_parameters, context
   1971         )
   1973 if self._has_events or self.engine._has_events:
   1974     self.dispatch.after_cursor_execute(
   1975         self,
   1976         cursor,
   (...)
   1980         context.executemany,
   1981     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/default.py:922, in DefaultDialect.do_execute(self, cursor, statement, parameters, context)
    921 def do_execute(self, cursor, statement, parameters, context=None):
--> 922     cursor.execute(statement, parameters)

Warning: You can only execute one statement at a time.
```
**Issue:** 
The Error occurs because when generating the SQLQuery, the llm_input
includes the stop character of "\nSQLResult:", so for this user query
the LLM generated response is **SELECT Time FROM men_butterfly_100m
WHERE Swimmer = 'Lance Larson';\nSQLResult:** it is required to remove
the SQLResult suffix on the llm response before executing it on the
database.

```
llm_inputs = {
            "input": input_text,
            "top_k": str(self.top_k),
            "dialect": self.database.dialect,
            "table_info": table_info,
            "stop": ["\nSQLResult:"],
        }

sql_cmd = self.llm_chain.predict(
                callbacks=_run_manager.get_child(),
                **llm_inputs,
            ).strip()

if SQL_RESULT in sql_cmd:
    sql_cmd = sql_cmd.split(SQL_RESULT)[0].strip()
result = self.database.run(sql_cmd)
```


<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 01:22:35 -07:00
Leonid Ganeline
4159a4723c
experimental[patch]: update module doc strings (#19539)
Added missed module descriptions. Fixed format.
2024-03-26 10:38:10 -04:00
Leonid Ganeline
3f6bf852ea
experimental: docstrings update (#18048)
Added missed docstrings. Formatted docsctrings to the consistent format.
2024-02-23 21:24:16 -05:00
Erick Friis
ed789be8f4
docs, templates: update schema imports to core (#17885)
- chat models, messages
- documents
- agentaction/finish
- baseretriever,document
- stroutputparser
- more messages
- basemessage
- format_document
- baseoutputparser

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-22 15:58:44 -08:00
Eugene Yurtsev
780e84ae79
community[minor]: SQLDatabase Add fetch mode cursor, query parameters, query by selectable, expose execution options, and documentation (#17191)
- **Description:** Improve `SQLDatabase` adapter component to promote
code re-use, see
[suggestion](https://github.com/langchain-ai/langchain/pull/16246#pullrequestreview-1846590962).
  - **Needed by:** GH-16246
  - **Addressed to:** @baskaryan, @cbornet 

## Details
- Add `cursor` fetch mode
- Accept SQL query parameters
- Accept both `str` and SQLAlchemy selectables as query expression
- Expose `execution_options`
- Documentation page (notebook) about `SQLDatabase` [^1]
See [About
SQLDatabase](https://github.com/langchain-ai/langchain/blob/c1c7b763/docs/docs/integrations/tools/sql_database.ipynb).

[^1]: Apparently there hasn't been any yet?

---------

Co-authored-by: Andreas Motl <andreas.motl@crate.io>
2024-02-07 22:23:43 -05:00
Bagatur
baeac236b6
langchain[patch], experimental[patch]: update utilities imports (#15438) 2024-01-03 02:18:15 -05:00
Bagatur
1678d6ca17
langchain[patch], experimental[patch], docs: update tools imports (#15433) 2024-01-02 18:23:34 -05:00
Bagatur
480626dc99
docs, community[patch], experimental[patch], langchain[patch], cli[pa… (#15412)
…tch]: import models from community

ran
```bash
git grep -l 'from langchain\.chat_models' | xargs -L 1 sed -i '' "s/from\ langchain\.chat_models/from\ langchain_community.chat_models/g"
git grep -l 'from langchain\.llms' | xargs -L 1 sed -i '' "s/from\ langchain\.llms/from\ langchain_community.llms/g"
git grep -l 'from langchain\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.embeddings/from\ langchain_community.embeddings/g"
git checkout master libs/langchain/tests/unit_tests/llms
git checkout master libs/langchain/tests/unit_tests/chat_models
git checkout master libs/langchain/tests/unit_tests/embeddings/test_imports.py
make format
cd libs/langchain; make format
cd ../experimental; make format
cd ../core; make format
```
2024-01-02 15:32:16 -05:00
Bagatur
8e0d5813c2
langchain[patch], experimental[patch]: replace langchain.schema imports (#15410)
Import from core instead.

Ran:
```bash
git grep -l 'from langchain.schema\.output_parser' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.output_parser/from\ langchain_core.output_parsers/g"
git grep -l 'from langchain.schema\.messages' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.messages/from\ langchain_core.messages/g"
git grep -l 'from langchain.schema\.document' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.document/from\ langchain_core.documents/g"
git grep -l 'from langchain.schema\.runnable' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.runnable/from\ langchain_core.runnables/g"
git grep -l 'from langchain.schema\.vectorstore' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.vectorstore/from\ langchain_core.vectorstores/g"
git grep -l 'from langchain.schema\.language_model' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.language_model/from\ langchain_core.language_models/g"
git grep -l 'from langchain.schema\.embeddings' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.embeddings/from\ langchain_core.embeddings/g"
git grep -l 'from langchain.schema\.storage' | xargs -L 1 sed -i '' "s/from\ langchain\.schema\.storage/from\ langchain_core.stores/g"
git checkout master libs/langchain/tests/unit_tests/schema/
make format
cd libs/experimental
make format
cd ../langchain
make format
```
2024-01-02 15:09:45 -05:00
Abdul
82102c99b3
langchain[patch]: Running SQLDatabaseChain adds prefix "SQLQuery:\n" (#14058)
- **Issue:** https://github.com/langchain-ai/langchain/issues/12077

---------

Co-authored-by: Abdul Kader Maliyakkal <maliyakk@amazon.com>
2023-12-01 19:26:16 -08:00
Qihui Xie
57ade13b2b
fix llm_inputs duplication problem in intermediate_steps in SQLDatabaseChain (#10279)
Use `.copy()` to fix the bug that the first `llm_inputs` element is
overwritten by the second `llm_inputs` element in `intermediate_steps`.

***Problem description:***
In [line 127](

c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L127C17-L127C17)),
the `llm_inputs` of the sql generation step is appended as the first
element of `intermediate_steps`:
```
            intermediate_steps.append(llm_inputs)  # input: sql generation
```

However, `llm_inputs` is a mutable dict, it is updated in [line
179](https://github.com/langchain-ai/langchain/blob/master/libs/experimental/langchain_experimental/sql/base.py#L179)
for the final answer step:
```
                llm_inputs["input"] = input_text
```
Then, the updated `llm_inputs` is appended as another element of
`intermediate_steps` in [line
180](c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L180)):
```
                intermediate_steps.append(llm_inputs)  # input: final answer
```

As a result, the final `intermediate_steps` returned in [line
189](c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L189C43-L189C43))
actually contains two same `llm_inputs` elements, i.e., the `llm_inputs`
for the sql generation step overwritten by the one for final answer step
by mistake. Users are not able to get the actual `llm_inputs` for the
sql generation step from `intermediate_steps`

Simply calling `.copy()` when appending `llm_inputs` to
`intermediate_steps` can solve this problem.
2023-10-05 21:32:08 -07:00
Predrag Gruevski
c9986bc3a9
Tweak type hints to match dependency's behavior. (#11355)
Needs #11353 to merge first, and a new `langchain` to be published with
those changes.
2023-10-04 22:36:58 -04:00
Mohammad Mohtashim
3bddd708f7
Add memory to sql chain (#8597)
continuation of PR #8550

@hwchase17 please see and merge. And also close the PR #8550.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-03 12:04:39 -07:00
Nuno Campos
7b13292e35
Remove python eval from vector sql db chain (#10937)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-09-23 08:51:03 -07:00
Aashish Saini
1b050b98f5
Corrected some spelling mistakes and grammatical errors (#10791)
Corrected some spelling mistakes and grammatical errors
CC: @baskaryan, @eyurtsev, @hwchase17.

---------

Co-authored-by: Ishita Chauhan <136303787+IshitaChauhanShortHillsAI@users.noreply.github.com>
Co-authored-by: Aashish Saini <141953346+AashishSainiShorthillsAI@users.noreply.github.com>
Co-authored-by: ManpreetShorthillsAI <142380984+ManpreetShorthillsAI@users.noreply.github.com>
Co-authored-by: AryamanJaiswalShorthillsAI <142397527+AryamanJaiswalShorthillsAI@users.noreply.github.com>
Co-authored-by: Adarsh Shrivastav <142413097+AdarshKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: Vishal <141389263+VishalYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: ChetnaGuptaShorthillsAI <142381084+ChetnaGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: PankajKumarShorthillsAI <142473460+PankajKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: AbhishekYadavShorthillsAI <142393903+AbhishekYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: AmitSinghShorthillsAI <142410046+AmitSinghShorthillsAI@users.noreply.github.com>
Co-authored-by: Md Nazish Arman <142379599+MdNazishArmanShorthillsAI@users.noreply.github.com>
Co-authored-by: KamalSharmaShorthillsAI <142474019+KamalSharmaShorthillsAI@users.noreply.github.com>
Co-authored-by: Lakshya <lakshyagupta87@yahoo.com>
Co-authored-by: Aayush <142384656+AayushShorthillsAI@users.noreply.github.com>
Co-authored-by: AnujMauryaShorthillsAI <142393269+AnujMauryaShorthillsAI@users.noreply.github.com>
Co-authored-by: ishita <chauhanishita5356@gmail.com>
2023-09-19 10:08:59 -07:00
Harrison Chase
12ff780089
move embeddings to schema (#10696) 2023-09-18 08:37:14 -07:00
Harrison Chase
5442d2b1fa
Harrison/stop importing from init (#10690) 2023-09-16 17:22:48 -07:00
Hedeer El Showk
9749f8ebae
database -> db in from_llm (#10667)
**Description:** Renamed argument `database` in
`SQLDatabaseSequentialChain.from_llm()` to `db`,

I realize it's tiny and a bit of a nitpick but for consistency with
SQLDatabaseChain (and all the others actually) I thought it should be
renamed. Also got me while working and using it today.

✔️ Please make sure your PR is passing linting and
testing before submitting. Run `make format`, `make lint` and `make
test` to check this locally.
2023-09-16 14:26:58 -07:00
刘 方瑞
890ed775a3
Resolve: VectorSearch enabled SQLChain? (#10177)
Squashed from #7454 with updated features

We have separated the `SQLDatabseChain` from `VectorSQLDatabseChain` and
put everything into `experimental/`.

Below is the original PR message from #7454.

-------

We have been working on features to fill up the gap among SQL, vector
search and LLM applications. Some inspiring works like self-query
retrievers for VectorStores (for example
[Weaviate](https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/weaviate_self_query.html)
and
[others](https://python.langchain.com/en/latest/modules/indexes/retrievers/examples/self_query.html))
really turn those vector search databases into a powerful knowledge
base! 🚀🚀

We are thinking if we can merge all in one, like SQL and vector search
and LLMChains, making this SQL vector database memory as the only source
of your data. Here are some benefits we can think of for now, maybe you
have more 👀:

With ALL data you have: since you store all your pasta in the database,
you don't need to worry about the foreign keys or links between names
from other data source.
Flexible data structure: Even if you have changed your schema, for
example added a table, the LLM will know how to JOIN those tables and
use those as filters.
SQL compatibility: We found that vector databases that supports SQL in
the marketplace have similar interfaces, which means you can change your
backend with no pain, just change the name of the distance function in
your DB solution and you are ready to go!

### Issue resolved:
- [Feature Proposal: VectorSearch enabled
SQLChain?](https://github.com/hwchase17/langchain/issues/5122)

### Change made in this PR:
- An improved schema handling that ignore `types.NullType` columns 
- A SQL output Parser interface in `SQLDatabaseChain` to enable Vector
SQL capability and further more
- A Retriever based on `SQLDatabaseChain` to retrieve data from the
database for RetrievalQAChains and many others
- Allow `SQLDatabaseChain` to retrieve data in python native format
- Includes PR #6737 
- Vector SQL Output Parser for `SQLDatabaseChain` and
`SQLDatabaseChainRetriever`
- Prompts that can implement text to VectorSQL
- Corresponding unit-tests and notebook

### Twitter handle: 
- @MyScaleDB

### Tag Maintainer:
Prompts / General: @hwchase17, @baskaryan
DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev

### Dependencies:
No dependency added
2023-09-06 17:08:12 -07:00
Programmers Emperor
872d829201
Update __init__.py (#9955)
Add SQLDatabaseSequentialChain Class to __init__.py so it can be
accessed and used

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
- Description: SQLDatabaseSequentialChain is not found when importing
Langchain_experimental package, when I open __init__.py
Langchain_expermental.sql, I found that SQLDatabaseSequentialChain is
imported and add to __all__ list
- Issue: SQLDatabaseSequentialChain is not found in
Langchain_experimental package
  - Dependencies: None,
  - Tag maintainer: None,
  - Twitter handle: None,

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-09-03 15:02:58 -07:00
Predrag Gruevski
eb3d1fa93c
Add security warning to experimental SQLDatabaseChain class. (#9867)
The most reliable way to not have a chain run an undesirable SQL command
is to not give it database permissions to run that command. That way the
database itself performs the rule enforcement, so it's much easier to
configure and use properly than anything we could add in ourselves.
2023-08-28 13:53:27 -04:00
Nuno Campos
c0d67420e5
Use a submodule for pydantic v1 compat (#9371)
<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - Description: a description of the change, 
  - Issue: the issue # it fixes (if applicable),
  - Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
 -->
2023-08-17 16:35:49 +01:00
Eugene Yurtsev
2673b3a314
Create pydantic v1 namespace in langchain (#9254)
Create pydantic v1 namespace in langchain experimental
2023-08-16 21:19:31 -07:00
Harrison Chase
1b0bfa54cf cr 2023-07-27 22:00:52 -07:00
Harrison Chase
aa0e69bc98
Harrison/official pre release (#8106) 2023-07-21 18:44:32 -07:00