Commit Graph

4942 Commits

Author SHA1 Message Date
Bagatur
65321bf975
core[patch]: fix ToolCall "type" when streaming (#24218) 2024-07-13 08:59:03 -07:00
Anush
a653b209ba
qdrant: test new QdrantVectorStore (#24165)
## Description

This PR adds integration tests to follow up on #24164.

By default, the tests use an in-memory instance.

To run the full suite of tests, with both in-memory and Qdrant server:

```
$ docker run -p 6333:6333 qdrant/qdrant

$ make test

$ make integration_test
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:59:30 +00:00
Roman Solomatin
f071581aea
openai[patch]: update openai params (#23691)
**Description:** Explicitly add parameters from openai API



- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 16:53:33 -07:00
Leonid Ganeline
f0a7581b50
milvus: docstring (#23151)
Added missed docstrings. Format docstrings to the consistent format
(used in the API Reference)

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:25:31 +00:00
Christian D. Glissov
474b88326f
langchain_qdrant: Added method "_asimilarity_search_with_relevance_scores" to Qdrant class (#23954)
I stumbled upon a bug that led to different similarity scores between
the async and sync similarity searches with relevance scores in Qdrant.
The reason being is that _asimilarity_search_with_relevance_scores is
missing, this makes langchain_qdrant use the method of the vectorstore
baseclass leading to drastically different results.

To illustrate the magnitude here are the results running an identical
search in a test vectorstore.

Output of asimilarity_search_with_relevance_scores:
[0.9902903374601824, 0.9472135924938804, 0.8535534011299859]

Output of similarity_search_with_relevance_scores:
[0.9805806749203648, 0.8944271849877607, 0.7071068022599718]

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 23:25:20 +00:00
Bagatur
bdc03997c9
standard-tests[patch]: check for ToolCall["type"] (#24209) 2024-07-12 16:17:34 -07:00
Miroslav
aee55eda39
community: Skip Login to HuggubgFaceHub when token is not set (#21561)
Thank you for contributing to LangChain!

- [ ] **HuggingFaceEndpoint**: "Skip Login to HuggingFaceHub"
  - Where:  langchain, community, llm, huggingface_endpoint
 


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Skip login to huggingface hub when when
`huggingfacehub_api_token` is not set. This is needed when using custom
`endpoint_url` outside of HuggingFaceHub.
- **Issue:** the issue # it fixes
https://github.com/langchain-ai/langchain/issues/20342 and
https://github.com/langchain-ai/langchain/issues/19685
    - **Dependencies:** None


- [ ] **Add tests and docs**: 
  1. Tested with locally available TGI endpoint
  2.  Example Usage
```python
from langchain_community.llms import HuggingFaceEndpoint

llm = HuggingFaceEndpoint(
    endpoint_url='http://localhost:8080',
    server_kwargs={
        "headers": {"Content-Type": "application/json"}
    }
)
resp = llm.invoke("Tell me a joke")
print(resp)
```
 Also tested against HF Endpoints
 ```python
 from langchain_community.llms import HuggingFaceEndpoint
huggingfacehub_api_token = "hf_xyz"
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
llm = HuggingFaceEndpoint(
    huggingfacehub_api_token=huggingfacehub_api_token,
    repo_id=repo_id,
)
resp = llm.invoke("Tell me a joke")
print(resp)
 ```
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 22:10:32 +00:00
Anush
d09dda5a08
qdrant: Bump patch version (#24168)
# Description

To release a new version of `langchain-qdrant` after #24165 and #24166.
2024-07-12 14:48:50 -07:00
Bagatur
12950cc602
standard-tests[patch]: improve runnable tool description (#24210) 2024-07-12 21:33:56 +00:00
Erick Friis
e8ee781a42
ibm: move to external repo (#24208) 2024-07-12 21:14:24 +00:00
Bagatur
02e71cebed
together[patch]: Release 0.1.4 (#24205) 2024-07-12 13:59:58 -07:00
Bagatur
259d4d2029
anthropic[patch]: Release 0.1.20 (#24204) 2024-07-12 13:59:15 -07:00
Bagatur
3aed74a6fc
fireworks[patch]: Release 0.1.5 (#24203) 2024-07-12 13:58:58 -07:00
Bagatur
13b0d7ec8f
openai[patch]: Release 0.1.16 (#24202) 2024-07-12 13:58:39 -07:00
Bagatur
71cd6e6feb
groq[patch]: Release 0.1.7 (#24201) 2024-07-12 13:58:19 -07:00
Bagatur
99054e19eb
mistralai[patch]: Release 0.1.10 (#24200) 2024-07-12 13:57:58 -07:00
Bagatur
7a1321e2f9
ibm[patch]: Release 0.1.10 (#24199) 2024-07-12 13:57:38 -07:00
Bagatur
cb5031f22f
integrations[patch]: require core >=0.2.17 (#24207) 2024-07-12 20:54:01 +00:00
Nithish Raghunandanan
f1618ec540
couchbase: Add standard and semantic caches (#23607)
Thank you for contributing to LangChain!

**Description:** Add support for caching (standard + semantic) LLM
responses using Couchbase


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Nithish Raghunandanan <nithishr@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-12 20:30:03 +00:00
Eugene Yurtsev
8d82a0d483
core[patch]: Mark GraphVectorStore as beta (#24195)
* This PR marks graph vectorstore as beta
2024-07-12 14:28:06 -04:00
Bagatur
0a1e475a30
core[patch]: Release 0.2.17 (#24189) 2024-07-12 17:08:29 +00:00
Bagatur
6166ea67a8
core[minor]: rename ToolMessage.raw_output -> artifact (#24185) 2024-07-12 09:52:44 -07:00
Jean Nshuti
d77d9bfc00
community[patch]: update typo document content returned from semanticscholar (#24175)
Update "astract" -> abstract
2024-07-12 15:40:47 +00:00
Leonid Ganeline
aa3e3cfa40
core[patch]: docstrings runnables update (#24161)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-12 11:27:06 -04:00
Tomaz Bratanic
d3a2b9fae0
Fix neo4j type error on missing constraint information (#24177)
If you use `refresh_schema=False`, then the metadata constraint doesn't
exist. ATM, we used default `None` in the constraint check, but then
`any` fails because it can't iterate over None value
2024-07-12 06:39:29 -04:00
Anush
7014d07cab
qdrant: new Qdrant implementation (#24164) 2024-07-12 04:52:02 +02:00
Xander Dumaine
35784d1c33
langchain[minor]: add document_variable_name to create_stuff_documents_chain (#24083)
- **Description:** `StuffDocumentsChain` uses `LLMChain` which is
deprecated by langchain runnables. `create_stuff_documents_chain` is the
replacement, but needs support for `document_variable_name` to allow
multiple uses of the chain within a longer chain.
- **Issue:** none
- **Dependencies:** none
2024-07-12 02:31:46 +00:00
Eugene Yurtsev
8858846607
milvus[patch]: Fix Milvus vectorstore for newer versions of langchain-core (#24152)
Fix for: https://github.com/langchain-ai/langchain/issues/24116

This keeps the old behavior of add_documents and add_texts
2024-07-11 18:51:18 -07:00
thedavgar
ffe6ca986e
community: Fix Bug in Azure Search Vectorstore search asyncronously (#24081)
Thank you for contributing to LangChain!

**Description**:
This PR fixes a bug described in the issue in #24064, when using the
AzureSearch Vectorstore with the asyncronous methods to do search which
is also the method used for the retriever. The proposed change includes
just change the access of the embedding as optional because is it not
used anywhere to retrieve documents. Actually, the syncronous methods of
retrieval do not use the embedding neither.

With this PR the code given by the user in the issue works.

```python
vectorstore = AzureSearch(
    azure_search_endpoint=os.getenv("AI_SEARCH_ENDPOINT_SECRET"),
    azure_search_key=os.getenv("AI_SEARCH_API_KEY"),
    index_name=os.getenv("AI_SEARCH_INDEX_NAME_SECRET"),
    fields=fields,
    embedding_function=encoder,
)

retriever = vectorstore.as_retriever(search_type="hybrid", k=2)

await vectorstore.avector_search("what is the capital of France")
await retriever.ainvoke("what is the capital of France")
```

**Issue**:
The Azure Search Vectorstore is not working when searching for documents
with asyncronous methods, as described in issue #24064

**Dependencies**:
There are no extra dependencies required for this change.

---------

Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
2024-07-11 18:32:19 -07:00
Anush
7790d67f94
qdrant: New sparse embeddings provider interface - PART 1 (#24015)
## Description

This PR introduces a new sparse embedding provider interface to work
with the new Qdrant implementation that will follow this PR.

Additionally, an implementation of this interface is provided with
https://github.com/qdrant/fastembed.

This PR will be followed by
https://github.com/Anush008/langchain/pull/3.
2024-07-11 17:07:25 -07:00
Erick Friis
1132fb801b
core: release 0.2.16 (#24159) 2024-07-11 23:59:41 +00:00
Nuno Campos
1d37aa8403
core: Remove extra newline (#24157) 2024-07-11 23:55:36 +00:00
ccurme
cb95198398
standard-tests[patch]: add tests for runnables as tools and streaming usage metadata (#24153) 2024-07-11 18:30:05 -04:00
Bagatur
8d100c58de
core[patch]: Tool accept RunnableConfig (#24143)
Relies on #24038

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 22:13:17 +00:00
Bagatur
5fd1e67808
core[minor], integrations...[patch]: Support ToolCall as Tool input and ToolMessage as Tool output (#24038)
Changes:
- ToolCall, InvalidToolCall and ToolCallChunk can all accept a "type"
parameter now
- LLM integration packages add "type" to all the above
- Tool supports ToolCall inputs that have "type" specified
- Tool outputs ToolMessage when a ToolCall is passed as input
- Tools can separately specify ToolMessage.content and
ToolMessage.raw_output
- Tools emit events for validation errors (using on_tool_error and
on_tool_end)

Example:
```python
@tool("structured_api", response_format="content_and_raw_output")
def _mock_structured_tool_with_raw_output(
    arg1: int, arg2: bool, arg3: Optional[dict] = None
) -> Tuple[str, dict]:
    """A Structured Tool"""
    return f"{arg1} {arg2}", {"arg1": arg1, "arg2": arg2, "arg3": arg3}


def test_tool_call_input_tool_message_with_raw_output() -> None:
    tool_call: Dict = {
        "name": "structured_api",
        "args": {"arg1": 1, "arg2": True, "arg3": {"img": "base64string..."}},
        "id": "123",
        "type": "tool_call",
    }
    expected = ToolMessage("1 True", raw_output=tool_call["args"], tool_call_id="123")
    tool = _mock_structured_tool_with_raw_output
    actual = tool.invoke(tool_call)
    assert actual == expected

    tool_call.pop("type")
    with pytest.raises(ValidationError):
        tool.invoke(tool_call)

    actual_content = tool.invoke(tool_call["args"])
    assert actual_content == expected.content
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-11 14:54:02 -07:00
Bagatur
eeb996034b
core[patch]: Release 0.2.15 (#24149) 2024-07-11 21:34:25 +00:00
Nuno Campos
03fba07d15
core[patch]: Update styles for mermaid graphs (#24147) 2024-07-11 14:19:36 -07:00
ccurme
8ee8ca7c83
core[patch]: propagate parse_docstring to tool decorator (#24123)
Disabled by default.

```python
from langchain_core.tools import tool

@tool(parse_docstring=True)
def foo(bar: str, baz: int) -> str:
    """The foo.

    Args:
        bar: this is the bar
        baz: this is the baz
    """
    return bar


foo.args_schema.schema()
```
```json
{
  "title": "fooSchema",
  "description": "The foo.",
  "type": "object",
  "properties": {
    "bar": {
      "title": "Bar",
      "description": "this is the bar",
      "type": "string"
    },
    "baz": {
      "title": "Baz",
      "description": "this is the baz",
      "type": "integer"
    }
  },
  "required": [
    "bar",
    "baz"
  ]
}
```
2024-07-11 20:11:45 +00:00
Jacob Lee
f1f1f75782
community[patch]: Make AzureML endpoint return AI messages for type assistant (#24085) 2024-07-11 21:45:30 +02:00
Eugene Yurtsev
4ba14adec6
core[patch]: Clean up indexing test code (#24139)
Refactor the code to use the existing InMemroyVectorStore.

This change is needed for another PR that moves some of the imports
around (and messes up the mock.patch in this file)
2024-07-11 18:54:46 +00:00
Atul R
457677c1b7
community: Fixes use of ImagePromptTemplate with Ollama (#24140)
Description: ImagePromptTemplate for Multimodal llms like llava when
using Ollama
Twitter handle: https://x.com/a7ulr

Details:

When using llava models / any ollama multimodal llms and passing images
in the prompt as urls, langchain breaks with this error.

```python
image_url_components = image_url.split(",")
                           ^^^^^^^^^^^^^^^^^^^^
AttributeError: 'dict' object has no attribute 'split'
```

From the looks of it, there was bug where the condition did check for a
`url` field in the variable but missed to actually assign it.

This PR fixes ImagePromptTemplate for Multimodal llms like llava when
using Ollama specifically.

@hwchase17
2024-07-11 11:31:48 -07:00
Matt
8327925ab7
community:support additional Azure Search Options (#24134)
- **Description:** Support additional kwargs options for the Azure
Search client (Described here
https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md#configurations)
    - **Issue:** N/A
    - **Dependencies:** No additional Dependencies

---------
2024-07-11 18:22:36 +00:00
ccurme
122e80e04d
core[patch]: add versionadded to as_tool (#24138) 2024-07-11 18:08:08 +00:00
Erick Friis
c4417ea93c
core: release 0.2.14, remove poetry 1.7 incompatible flag from root (#24137) 2024-07-11 17:59:51 +00:00
Isaac Francisco
7a62d3dbd6
standard-tests[patch]: test that bind_tools can accept regular python function (#24135) 2024-07-11 17:42:17 +00:00
Nuno Campos
2428984205
core: Add metadata to graph json repr (#24131)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-11 17:23:52 +00:00
Harley Gross
ea3cd1ebba
community[minor]: added support for C in RecursiveCharacterTextSplitter (#24091)
Description: Added support for C in RecursiveCharacterTextSplitter by
reusing the separators for C++
2024-07-11 16:47:48 +00:00
Nuno Campos
3e454d7568
core: fix docstring (#24129) 2024-07-11 16:38:14 +00:00
Eugene Yurtsev
08638ccc88
community[patch]: QianfanLLMEndpoint fix type information for the keys (#24128)
Fix for issue: https://github.com/langchain-ai/langchain/issues/24126
2024-07-11 16:24:26 +00:00
Nuno Campos
ee3fe20af4
core: mermaid: Render metadata key-value pairs when drawing mermaid graph (#24103)
- if node is runnable binding with metadata attached
2024-07-11 16:22:23 +00:00
Eugene Yurtsev
1e7d8ba9a6
ci[patch]: Update community linter to provide a helpful error message (#24127)
Update community import linter to explain what's wrong
2024-07-11 16:22:08 +00:00
maang-h
16e178a8c2
docs: Add MiniMaxChat docstrings (#24026)
- **Description:** Add MiniMaxChat rich docstrings.
- **Issue:** the issue #22296
2024-07-11 10:55:02 -04:00
Christophe Bornet
5fc5ef2b52
community[minor]: Add graph store extractors (#24065)
This adds an extractor interface and an implementation for HTML pages.
Extractors are used to create GraphVectorStore Links on loaded content.

**Twitter handle:** cbornet_
2024-07-11 10:35:31 -04:00
maang-h
9bcf8f867d
docs: Add SQLChatMessageHistory docstring (#23978)
- **Description:** Add SQLChatMessageHistory docstring.
- **Issue:** the issue #21983

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-11 14:24:28 +00:00
Rafael Pereira
092e9ee0e6
community[minor]: Neo4j Fixed similarity docs (#23913)
**Description:** There was missing some documentation regarding the
`filter` and `params` attributes in similarity search methods.

---------

Co-authored-by: rpereira <rafael.pereira@criticalsoftware.com>
2024-07-11 10:16:48 -04:00
Eugene Yurtsev
dc131ac42a
core[minor]: Add dispatching for custom events (#24080)
This PR allows dispatching adhoc events for a given run.

# Context

This PR allows users to send arbitrary data to the callback system and
to the astream events API from within a given runnable. This can be
extremely useful to surface custom information to end users about
progress etc.

Integration with langsmith tracer will be done separately since the data
cannot be currently visualized. It'll be accommodated using the events
attribute of the Run

# Examples with astream events

```python
from langchain_core.callbacks import adispatch_custom_event
from langchain_core.tools import tool

@tool
async def foo(x: int) -> int:
    """Foo"""
    await adispatch_custom_event("event1", {"x": x})
    await adispatch_custom_event("event2", {"x": x})
    return x + 1

async for event in foo.astream_events({'x': 1}, version='v2'):
    print(event)
```

```python
{'event': 'on_tool_start', 'data': {'input': {'x': 1}}, 'name': 'foo', 'tags': [], 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'metadata': {}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_tool_end', 'data': {'output': 2}, 'run_id': 'fd6fb7a7-dd37-4191-962c-e43e245909f6', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}
```

```python
from langchain_core.callbacks import adispatch_custom_event
from langchain_core.runnables import RunnableLambda

@RunnableLambda
async def foo(x: int) -> int:
    """Foo"""
    await adispatch_custom_event("event1", {"x": x})
    await adispatch_custom_event("event2", {"x": x})
    return x + 1

async for event in foo.astream_events(1, version='v2'):
    print(event)
```

```python
{'event': 'on_chain_start', 'data': {'input': 1}, 'name': 'foo', 'tags': [], 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'metadata': {}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'event1', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_custom_event', 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'event2', 'tags': [], 'metadata': {}, 'data': {'x': 1}, 'parent_ids': []}
{'event': 'on_chain_stream', 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'foo', 'tags': [], 'metadata': {}, 'data': {'chunk': 2}, 'parent_ids': []}
{'event': 'on_chain_end', 'data': {'output': 2}, 'run_id': 'ce2beef2-8608-49ea-8eba-537bdaafb8ec', 'name': 'foo', 'tags': [], 'metadata': {}, 'parent_ids': []}
```

# Examples with handlers 

This is copy pasted from unit tests

```python
    class CustomCallbackManager(BaseCallbackHandler):
        def __init__(self) -> None:
            self.events: List[Any] = []

        def on_custom_event(
            self,
            name: str,
            data: Any,
            *,
            run_id: UUID,
            tags: Optional[List[str]] = None,
            metadata: Optional[Dict[str, Any]] = None,
            **kwargs: Any,
        ) -> None:
            assert kwargs == {}
            self.events.append(
                (
                    name,
                    data,
                    run_id,
                    tags,
                    metadata,
                )
            )

    callback = CustomCallbackManager()

    run_id = uuid.UUID(int=7)

    @RunnableLambda
    def foo(x: int, config: RunnableConfig) -> int:
        dispatch_custom_event("event1", {"x": x})
        dispatch_custom_event("event2", {"x": x}, config=config)
        return x

    foo.invoke(1, {"callbacks": [callback], "run_id": run_id})

    assert callback.events == [
        ("event1", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}),
        ("event2", {"x": 1}, UUID("00000000-0000-0000-0000-000000000007"), [], {}),
    ]
```
2024-07-11 02:25:12 +00:00
Erick Friis
71c2221f8c
openai: release 0.1.15 (#24097) 2024-07-10 16:45:42 -07:00
Erick Friis
6ea6f9f7bc
core: release 0.2.13 (#24096) 2024-07-10 16:39:15 -07:00
ccurme
975b6129f6
core[patch]: support conversion of runnables to tools (#23992)
Open to other thoughts on UX.

string input:
```python
as_tool = retriever.as_tool()
as_tool.invoke("cat")  # [Document(...), ...]
```

typed dict input:
```python
class Args(TypedDict):
    key: int

def f(x: Args) -> str:
    return str(x["key"] * 2)

as_tool = RunnableLambda(f).as_tool(
    name="my tool",
    description="description",  # name, description are inferred if not supplied
)
as_tool.invoke({"key": 3})  # "6"
```

for untyped dict input, allow specification of parameters + types
```python
def g(x: Dict[str, Any]) -> str:
    return str(x["key"] * 2)

as_tool = RunnableLambda(g).as_tool(arg_types={"key": int})
result = as_tool.invoke({"key": 3})  # "6"
```

Passing the `arg_types` is slightly awkward but necessary to ensure tool
calls populate parameters correctly:
```python
from typing import Any, Dict

from langchain_core.runnables import RunnableLambda
from langchain_openai import ChatOpenAI


def f(x: Dict[str, Any]) -> str:
    return str(x["key"] * 2)

runnable = RunnableLambda(f)
as_tool = runnable.as_tool(arg_types={"key": int})

llm = ChatOpenAI().bind_tools([as_tool])

result = llm.invoke("Use the tool on 3.")
tool_call = result.tool_calls[0]
args = tool_call["args"]
assert args == {"key": 3}

as_tool.run(args)
```

Contrived (?) example with langgraph agent as a tool:
```python
from typing import List, Literal
from typing_extensions import TypedDict

from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_react_agent


llm = ChatOpenAI(temperature=0)


def magic_function(input: int) -> int:
    """Applies a magic function to an input."""
    return input + 2


agent_1 = create_react_agent(llm, [magic_function])


class Message(TypedDict):
    role: Literal["human"]
    content: str

agent_tool = agent_1.as_tool(
    arg_types={"messages": List[Message]},
    name="Jeeves",
    description="Ask Jeeves.",
)

agent_2 = create_react_agent(llm, [agent_tool])
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-10 19:29:59 -04:00
Bagatur
6928f4c438
core[minor]: Add ToolMessage.raw_output (#23994)
Decisions to discuss:
1.  is a new attr needed or could additional_kwargs be used for this
2. is raw_output a good name for this attr
3. should raw_output default to {} or None
4. should raw_output be included in serialization
5. do we need to update repr/str to  exclude raw_output
2024-07-10 20:11:10 +00:00
Eugene Yurtsev
c4e149d4f1
community[patch]: Add linter to catch @root_validator (#24070)
- Add linter to prevent further usage of vanilla root validator
- Udpate remaining root validators
2024-07-10 14:51:03 +00:00
ccurme
9c6efadec3
community[patch]: propagate cost information to OpenAI callback (#23996)
This is enabled following
https://github.com/langchain-ai/langchain/pull/22716.
2024-07-10 14:50:35 +00:00
William FH
1e1fd30def
[Core] Fix fstring in logger warning (#24043) 2024-07-09 19:53:18 -07:00
Ethan Yang
13855ef0c3
[HuggingFace Pipeline] add streaming support (#23852) 2024-07-09 17:02:00 -04:00
Nuno Campos
859e434932
core: Speed up json parse for large strings (#24036)
for a large string:
- old 4.657918874989264
- new 0.023724667000351474
2024-07-09 12:26:50 -07:00
Nuno Campos
160fc7f246
core: Move json parsing in base chat model / output parser to bg thread (#24031)
- add version of AIMessageChunk.__add__ that can add many chunks,
instead of only 2
- In agenerate_from_stream merge and parse chunks in bg thread
- In output parse base classes do more work in bg threads where
appropriate

---------

Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
2024-07-09 12:26:36 -07:00
Nuno Campos
73966e693c
openai: Create msg chunk in bg thread (#24032)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-07-09 12:01:51 -07:00
Erick Friis
007c5a85d5
multiple: use modern installer in poetry (#23998) 2024-07-08 18:50:48 -07:00
Erick Friis
e80c150c44
community: release 0.2.7 (prev was langchain) (#23997) 2024-07-08 23:43:32 +00:00
Erick Friis
9f8fd08955
community: release 0.2.7 (#23993) 2024-07-08 22:04:58 +00:00
Erick Friis
bedd893cd1
core: release 0.2.12 (#23991) 2024-07-08 21:29:29 +00:00
Bagatur
1e957c0c23
docs: rm discord (#23985) 2024-07-08 14:27:58 -07:00
Eugene Yurtsev
f765e8fa9d
core[minor],community[patch],standard-tests[patch]: Move InMemoryImplementation to langchain-core (#23986)
This PR moves the in memory implementation to langchain-core.

* The implementation remains importable from langchain-community.
* Supporting utilities are marked as private for now.
2024-07-08 14:11:51 -07:00
Eugene Yurtsev
aa8c9bb4a9
community[patch]: Add constraint for pdfminer.six to unbreak CI (#23988)
Something changed in pdfminer six. This PR unreaks CI without
fixing the underlying PDF parser.
2024-07-08 20:55:19 +00:00
Eugene Yurtsev
2c180d645e
core[minor],community[minor]: Upgrade all @root_validator() to @pre_init (#23841)
This PR introduces a @pre_init decorator that's a @root_validator(pre=True) but with all the defaults populated!
2024-07-08 16:09:29 -04:00
Eugene Yurtsev
9787552b00
core[patch]: Use InMemoryChatMessageHistory in unit tests (#23916)
Update unit test to use the existing implementation of chat message
history
2024-07-05 20:10:54 +00:00
Rajendra Kadam
8b84457b17
community[minor]: Support PGVector in PebbloRetrievalQA (#23874)
- **Description:** Support PGVector in PebbloRetrievalQA
  - Identity and Semantic Enforcement support for PGVector
  - Refactor Vectorstore validation and name check
  - Clear the overridden identity and semantic enforcement filters
- **Issue:** NA
- **Dependencies:** NA
- **Tests**: NA(already added)
-  **Docs**: Updated
- **Twitter handle:** [@Raj__725](https://twitter.com/Raj__725)
2024-07-05 16:02:25 -04:00
Eugene Yurtsev
e0186df56b
core[patch]: Clarify upsert response semantics (#23921) 2024-07-05 15:59:47 -04:00
Rajendra Kadam
ee8aa54f53
community[patch]: Fix source path mismatch in PebbloSafeLoader (#23857)
**Description:** Fix for source path mismatch in PebbloSafeLoader. The
fix involves storing the full path in the doc metadata in VectorDB
**Issue:** NA, caught in internal testing
**Dependencies:** NA
**Add tests**:  Updated tests
2024-07-05 15:24:17 -04:00
Eugene Yurtsev
5b7d5f7729
core[patch]: Add comment to clarify aadd_documents (#23920)
Add comment to clarify how add documents works
2024-07-05 15:20:16 -04:00
Eugene Yurtsev
e0889384d9
standard-tests[minor]: add unit tests for testing get_by_ids, aget_by_ids, upsert, aupsert_by_ids (#23919)
These standard unit tests provide standard tests for functionality
introduced in these PRs:

* https://github.com/langchain-ai/langchain/pull/23774
* https://github.com/langchain-ai/langchain/pull/23594
2024-07-05 19:11:54 +00:00
ccurme
74c7198906
core, anthropic[patch]: support streaming tool calls when function has no arguments (#23915)
resolves https://github.com/langchain-ai/langchain/issues/23911

When an AIMessageChunk is instantiated, we attempt to parse tool calls
off of the tool_call_chunks.

Here we add a special-case to this parsing, where `""` will be parsed as
`{}`.

This is a reaction to how Anthropic streams tool calls in the case where
a function has no arguments:
```
{'id': 'toolu_01J8CgKcuUVrMqfTQWPYh64r', 'input': {}, 'name': 'magic_function', 'type': 'tool_use', 'index': 1}
{'partial_json': '', 'type': 'tool_use', 'index': 1}
```
The `partial_json` does not accumulate to a valid json string-- most
other providers tend to emit `"{}"` in this case.
2024-07-05 18:57:41 +00:00
Mateusz Szewczyk
902b57d107
IBM: Added WatsonxChat passing params to invoke method (#23758)
Thank you for contributing to LangChain!

- [x] **PR title**: "IBM: Added WatsonxChat to chat models preview,
update passing params to invoke method"


- [x] **PR message**: 
- **Description:** Added WatsonxChat passing params to invoke method,
added integration tests
    - **Dependencies:** `ibm_watsonx_ai`


- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-07-05 18:07:50 +00:00
ccurme
1f5a163f42
langchain[patch]: deprecate QAGenerationChain (#23730) 2024-07-05 18:06:19 +00:00
ccurme
25de47878b
langchain[patch]: deprecate AnalyzeDocumentChain (#23769) 2024-07-05 14:00:23 -04:00
Christophe Bornet
42d049f618
core[minor]: Add Graph Store component (#23092)
This PR introduces a GraphStore component. GraphStore extends
VectorStore with the concept of links between documents based on
document metadata. This allows linking documents based on a variety of
techniques, including common keywords, explicit links in the content,
and other patterns.

This works with existing Documents, so it’s easy to extend existing
VectorStores to be used as GraphStores. The interface can be implemented
for any Vector Store technology that supports metadata, not only graph
DBs.

When retrieving documents for a given query, the first level of search
is done using classical similarity search. Next, links may be followed
using various traversal strategies to get additional documents. This
allows documents to be retrieved that aren’t directly similar to the
query but contain relevant information.

2 retrieving methods are added to the VectorStore ones : 
* traversal_search which gets all linked documents up to a certain depth
* mmr_traversal_search which selects linked documents using an MMR
algorithm to have more diverse results.

If a depth of retrieval of 0 is used, GraphStore is effectively a
VectorStore. It enables an easy transition from a simple VectorStore to
GraphStore by adding links between documents as a second step.

An implementation for Apache Cassandra is also proposed.

See
https://github.com/datastax/ragstack-ai/blob/main/libs/knowledge-store/notebooks/astra_support.ipynb
for a notebook explaining how to use GraphStore and that shows that it
can answer correctly to questions that a simple VectorStore cannot.

**Twitter handle:** _cbornet
2024-07-05 12:24:10 -04:00
Leonid Ganeline
77f5fc3d55
core: docstrings load (#23787)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-05 12:23:19 -04:00
Eugene Yurtsev
6f08e11d7c
core[minor]: add upsert, streaming_upsert, aupsert, astreaming_upsert methods to the VectorStore abstraction (#23774)
This PR rolls out part of the new proposed interface for vectorstores
(https://github.com/langchain-ai/langchain/pull/23544) to existing store
implementations.

The PR makes the following changes:

1. Adds standard upsert, streaming_upsert, aupsert, astreaming_upsert
methods to the vectorstore.
2. Updates `add_texts` and `aadd_texts` to be non required with a
default implementation that delegates to `upsert` and `aupsert` if those
have been implemented. The original `add_texts` and `aadd_texts` methods
are problematic as they spread object specific information across
document and **kwargs. (e.g., ids are not a part of the document)
3. Adds a default implementation to `add_documents` and `aadd_documents`
that delegates to `upsert` and `aupsert` respectively.
4. Adds standard unit tests to verify that a given vectorstore
implements a correct read/write API.

A downside of this implementation is that it creates `upsert` with a
very similar signature to `add_documents`.
The reason for introducing `upsert` is to:
* Remove any ambiguities about what information is allowed in `kwargs`.
Specifically kwargs should only be used for information common to all
indexed data. (e.g., indexing timeout).
*Allow inheriting from an anticipated generalized interface for indexing
that will allow indexing `BaseMedia` (i.e., allow making a vectorstore
for images/audio etc.)
 
`add_documents` can be deprecated in the future in favor of `upsert` to
make sure that users have a single correct way of indexing content.

---------

Co-authored-by: ccurme <chester.curme@gmail.com>
2024-07-05 12:21:40 -04:00
G Sreejith
3c752238c5
core[patch]: Fix typo in docstring (graphm -> graph) (#23910)
Changes has been as per the request
Replaced graphm with graph
2024-07-05 16:20:33 +00:00
Leonid Ganeline
12c92b6c19
core: docstrings outputs (#23889)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-05 12:18:17 -04:00
Leonid Ganeline
1eca98ec56
core: docstrings prompts (#23890)
Added missed docstrings. Formatted docstrings to the consistent form.
2024-07-05 12:17:52 -04:00
Philippe PRADOS
289960bc60
community[patch]: Redis.delete should be a regular method not a static method (#23873)
The `langchain_common.vectostore.Redis.delete()` must not be a
`@staticmethod`.

With the current implementation, it's not possible to have multiple
instances of Redis vectorstore because all versions must share the
`REDIS_URL`.

It's not conform with the base class.
2024-07-05 12:04:58 -04:00
Mohammad Mohtashim
2274d2b966
core[patch]: Accounting for Optional Input Variables in BasePromptTemplate (#22851)
**Description**: After reviewing the prompts API, it is clear that the
only way a user can explicitly mark an input variable as optional is
through the `MessagePlaceholder.optional` attribute. Otherwise, the user
must explicitly pass in the `input_variables` expected to be used in the
`BasePromptTemplate`, which will be validated upon execution. Therefore,
to semantically handle a `MessagePlaceholder` `variable_name` as
optional, we will treat the `variable_name` of `MessagePlaceholder` as a
`partial_variable` if it has been marked as optional. This approach
aligns with how the `variable_name` of `MessagePlaceholder` is already
handled
[here](https://github.com/keenborder786/langchain/blob/optional_input_variables/libs/core/langchain_core/prompts/chat.py#L991).
Additionally, an attribute `optional_variable` has been added to
`BasePromptTemplate`, and the `variable_name` of `MessagePlaceholder` is
also made part of `optional_variable` when marked as optional.

Moreover, the `get_input_schema` method has been updated for
`BasePromptTemplate` to differentiate between optional and non-optional
variables.

**Issue**: #22832, #21425

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-07-05 15:49:40 +00:00
Klaudia Lemiec
a2082bc1f8
docs: Arxiv docs update (#23871)
- [X] **PR title**
- [X] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** Update of docstrings and docpages
- **Issue:**
[22866](https://github.com/langchain-ai/langchain/issues/22866)

- [X] **Add tests and docs**

- [X] **Lint and test**
2024-07-05 11:43:51 -04:00
André Quintino
99b1467b63
community: add support for 'cloud' parameter in JiraAPIWrapper (#23057)
- **Description:** Enhance JiraAPIWrapper to accept the 'cloud'
parameter through an environment variable. This update allows more
flexibility in configuring the environment for the Jira API.
 - **Twitter handle:** Andre_Q_Pereira

---------

Co-authored-by: André Quintino <andre.quintino@tui.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
2024-07-05 15:11:10 +00:00
wenngong
b1e90b3075
community: add model_name param valid for GPT4AllEmbeddings (#23867)
Description: add model_name param valid for GPT4AllEmbeddings

Issue: #23863 #22819

---------

Co-authored-by: gongwn1 <gongwn1@lenovo.com>
2024-07-05 10:46:34 -04:00
volodymyr-memsql
a4eb6d0fb1
community: add SingleStoreDB semantic cache (#23218)
This PR adds a `SingleStoreDBSemanticCache` class that implements a
cache based on SingleStoreDB vector store, integration tests, and a
notebook example.

Additionally, this PR contains minor changes to SingleStoreDB vector
store:
 - change add texts/documents methods to return a list of inserted ids
 - implement delete(ids) method to delete documents by list of ids
 - added drop() method to drop a correspondent database table
- updated integration tests to use and check functionality implemented
above


CC: @baskaryan, @hwchase17

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
2024-07-05 09:26:06 -04:00
Igor Drozdov
bb597b1286
feat(community): add bind_tools function for ChatLiteLLM (#23823)
It's a follow-up to https://github.com/langchain-ai/langchain/pull/23765

Now the tools can be bound by calling `bind_tools`

```python
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_community.chat_models import ChatLiteLLM

class GetWeather(BaseModel):
    '''Get the current weather in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

class GetPopulation(BaseModel):
    '''Get the current population in a given location'''

    location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

prompt = "Which city is hotter today and which is bigger: LA or NY?"
# tools = [convert_to_openai_tool(GetWeather), convert_to_openai_tool(GetPopulation)]
tools = [GetWeather, GetPopulation]

llm = ChatLiteLLM(model="claude-3-sonnet-20240229").bind_tools(tools)
ai_msg = llm.invoke(prompt)
print(ai_msg.tool_calls)
```

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

Co-authored-by: Igor Drozdov <idrozdov@gitlab.com>
2024-07-05 09:19:41 -04:00
Jiejun Tan
2be66a38d8
huggingface: Fix huggingface tei support (#22653)
Update former pull request:
https://github.com/langchain-ai/langchain/pull/22595.

Modified
`libs/partners/huggingface/langchain_huggingface/embeddings/huggingface_endpoint.py`,
where the API call function does not match current [Text Embeddings
Inference
API](https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/embed).
One example is:
```json
{
  "inputs": "string",
  "normalize": true,
  "truncate": false
}
```
Parameters in `_model_kwargs` are not passed properly in the latest
version. By the way, the issue *[why cause 413?
#50](https://github.com/huggingface/text-embeddings-inference/issues/50)*
might be solved.
2024-07-03 13:30:29 -07:00
Eugene Yurtsev
9ccc4b1616
core[patch]: Fix logic in BaseChatModel that processes the llm string that is used as a key for caching chat models responses (#23842)
This PR should fix the following issue:
https://github.com/langchain-ai/langchain/issues/23824
Introduced as part of this PR:
https://github.com/langchain-ai/langchain/pull/23416

I am unable to reproduce the issue locally though it's clear that we're
getting a `serialized` object which is not a dictionary somehow.

The test below passes for me prior to the PR as well

```python

def test_cache_with_sqllite() -> None:
    from langchain_community.cache import SQLiteCache

    from langchain_core.globals import set_llm_cache

    cache = SQLiteCache(database_path=".langchain.db")
    set_llm_cache(cache)
    chat_model = FakeListChatModel(responses=["hello", "goodbye"], cache=True)
    assert chat_model.invoke("How are you?").content == "hello"
    assert chat_model.invoke("How are you?").content == "hello"
```
2024-07-03 16:23:55 -04:00