Deduplicate documents using MD5 of the page_content. Also allows for
custom deduplication with graph ingestion method by providing metadata
id attribute
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Description:** Adding an optional parameter `linearization_config`
to the `AmazonTextractPDFLoader` so the caller can define how the output
will be linearized, instead of forcing a predefined set of linearization
configs. It will still have a default configuration as this will be an
optional parameter.
- **Issue:** #17457
- **Dependencies:** The same ones that already exist for
`AmazonTextractPDFLoader`
- **Twitter handle:** [@lvieirajr19](https://twitter.com/lvieirajr19)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
*Description**: My previous
[PR](https://github.com/langchain-ai/langchain/pull/18521) was
mistakenly closed, so I am reopening this one. Context: AWS released two
Mistral models on Bedrock last Friday (March 1, 2024). This PR includes
some code adjustments to ensure their compatibility with the Bedrock
class.
---------
Co-authored-by: Anis ZAKARI <anis.zakari@hymaia.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Update azuresearch vectorstore from_texts() method to
include fields argument, necessary for creating an Azure AI Search index
with custom fields.
- **Issue:** Currently index fields are fixed to default fields if Azure
Search index is created using from_texts() method
- **Dependencies:** None
- **Twitter handle:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Small improvement to the openapi prompt.
The agent was not finding the server base URL (looping through all
nodes). This small change narrows the search and enables finding the url
faster.
No dependency
Twitter : @al1pra
- **Description:** `S3DirectoryLoader` is failing if prefix is a folder
(ex: `my_folder/`) because `S3FileLoader` will try to load that folder
and will fail. This PR skip nested directories so prefix can be set to
folder instead of `my_folder/files_prefix`.
- **Issue:**
- #11917
- #6535
- #4326
- **Dependencies:** none
- **Twitter handle:** @Falydoor
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
- [ ] Title: Mongodb: MongoDB connection performance improvement.
- [ ] Message:
- **Description:** I made collection index_creation as optional. Index
Creation is one time process.
- **Issue:** MongoDBChatMessageHistory class object is attempting to
create an index during connection, causing each request to take longer
than usual. This should be optional with a parameter.
- **Dependencies:** N/A
- **Branch to be checked:** origin/mongo_index_creation
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Add embedding instruction to
HuggingFaceBgeEmbeddings, so that it can be compatible with nomic and
other models that need embedding instruction.
---------
Co-authored-by: Tao Wu <tao.wu@rwth-aachen.de>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Add Passio Nutrition AI Food Search Tool to Community Package
### Description
We propose adding a new tool to the `community` package, enabling
integration with Passio Nutrition AI for food search functionality. This
tool will provide a simple interface for retrieving nutrition facts
through the Passio Nutrition AI API, simplifying user access to
nutrition data based on food search queries.
### Implementation Details
- **Class Structure:** Implement `NutritionAI`, extending `BaseTool`. It
includes an `_run` method that accepts a query string and, optionally, a
`CallbackManagerForToolRun`.
- **API Integration:** Use `NutritionAIAPI` for the API wrapper,
encapsulating all interactions with the Passio Nutrition AI and
providing a clean API interface.
- **Error Handling:** Implement comprehensive error handling for API
request failures.
### Expected Outcome
- **User Benefits:** Enable easy querying of nutrition facts from Passio
Nutrition AI, enhancing the utility of the `langchain_community` package
for nutrition-related projects.
- **Functionality:** Provide a straightforward method for integrating
nutrition information retrieval into users' applications.
### Dependencies
- `langchain_core` for base tooling support
- `pydantic` for data validation and settings management
- Consider `requests` or another HTTP client library if not covered by
`NutritionAIAPI`.
### Tests and Documentation
- **Unit Tests:** Include tests that mock network interactions to ensure
tool reliability without external API dependency.
- **Documentation:** Create an example notebook in
`docs/docs/integrations/tools/passio_nutrition_ai.ipynb` showing usage,
setup, and example queries.
### Contribution Guidelines Compliance
- Adhere to the project's linting and formatting standards (`make
format`, `make lint`, `make test`).
- Ensure compliance with LangChain's contribution guidelines,
particularly around dependency management and package modifications.
### Additional Notes
- Aim for the tool to be a lightweight, focused addition, not
introducing significant new dependencies or complexity.
- Potential future enhancements could include caching for common queries
to improve performance.
### Twitter Handle
- Here is our Passio AI [twitter handle](https://twitter.com/@passio_ai)
where we announce our products.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
"community: added a feature to filter documents in Mongoloader"
- **Description:** added a feature to filter documents in Mongoloader
- **Feature:** the feature #18251
- **Dependencies:** No
- **Twitter handle:** https://twitter.com/im_Kushagra
For some DBs with lots of tables, reflection of all the tables can take
very long. So this change will make the tables be reflected lazily when
get_table_info() is called and `lazy_table_reflection` is True.
## Description
- Add [Friendli](https://friendli.ai/) integration for `Friendli` LLM
and `ChatFriendli` chat model.
- Unit tests and integration tests corresponding to this change are
added.
- Documentations corresponding to this change are added.
## Dependencies
- Optional dependency
[`friendli-client`](https://pypi.org/project/friendli-client/) package
is added only for those who use `Frienldi` or `ChatFriendli` model.
## Twitter handle
- https://twitter.com/friendliai
This pull request introduces initial support for the TiDB vector store.
The current version is basic, laying the foundation for the vector store
integration. While this implementation provides the essential features,
we plan to expand and improve the TiDB vector store support with
additional enhancements in future updates.
Upcoming Enhancements:
* Support for Vector Index Creation: To enhance the efficiency and
performance of the vector store.
* Support for max marginal relevance search.
* Customized Table Structure Support: Recognizing the need for
flexibility, we plan for more tailored and efficient data store
solutions.
Simple use case exmaple
```python
from typing import List, Tuple
from langchain.docstore.document import Document
from langchain_community.vectorstores import TiDBVectorStore
from langchain_openai import OpenAIEmbeddings
db = TiDBVectorStore.from_texts(
embedding=embeddings,
texts=['Andrew like eating oranges', 'Alexandra is from England', 'Ketanji Brown Jackson is a judge'],
table_name="tidb_vector_langchain",
connection_string=tidb_connection_url,
distance_strategy="cosine",
)
query = "Can you tell me about Alexandra?"
docs_with_score: List[Tuple[Document, float]] = db.similarity_search_with_score(query)
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)
```
- **Description:** Chroma use uuid4 instead of uuid1 as random ids. Use
uuid1 may leak mac address, changing to uuid4 will not cause other
effects.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** None
Fixes#18513.
## Description
This PR attempts to fix the support for Anthropic Claude v3 models in
BedrockChat LLM. The changes here has updated the payload to use the
`messages` format instead of the formatted text prompt for all models;
`messages` API is backwards compatible with all models in Anthropic, so
this should not break the experience for any models.
## Notes
The PR in the current form does not support the v3 models for the
non-chat Bedrock LLM. This means, that with these changes, users won't
be able to able to use the v3 models with the Bedrock LLM. I can open a
separate PR to tackle this use-case, the intent here was to get this out
quickly, so users can start using and test the chat LLM. The Bedrock LLM
classes have also grown complex with a lot of conditions to support
various providers and models, and is ripe for a refactor to make future
changes more palatable. This refactor is likely to take longer, and
requires more thorough testing from the community. Credit to PRs
[18579](https://github.com/langchain-ai/langchain/pull/18579) and
[18548](https://github.com/langchain-ai/langchain/pull/18548) for some
of the code here.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
This integrates Infinispan as a vectorstore.
Infinispan is an open-source key-value data grid, it can work as single
node as well as distributed.
Vector search is supported since release 15.x
For more: [Infinispan Home](https://infinispan.org)
Integration tests are provided as well as a demo notebook
Follow up on https://github.com/langchain-ai/langchain/pull/17467.
- Update all references to the Elasticsearch classes to use the partners
package.
- Deprecate community classes.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
ValidationError: 2 validation errors for DocArrayDoc
text
Field required [type=missing, input_value={'embedding': [-0.0191128...9, 0.01005221541175212]}, input_type=dict]
For further information visit https://errors.pydantic.dev/2.5/v/missing
metadata
Field required [type=missing, input_value={'embedding': [-0.0191128...9, 0.01005221541175212]}, input_type=dict]
For further information visit https://errors.pydantic.dev/2.5/v/missing
```
In the `_get_doc_cls` method, the `DocArrayDoc` class is defined as
follows:
```python
class DocArrayDoc(BaseDoc):
text: Optional[str]
embedding: Optional[NdArray] = Field(**embeddings_params)
metadata: Optional[dict]
```
This is a PR that adds a dangerous load parameter to force users to opt in to use pickle.
This is a PR that's meant to raise user awareness that the pickling module is involved.
This is a patch for `CVE-2024-2057`:
https://www.cve.org/CVERecord?id=CVE-2024-2057
This affects users that:
* Use the `TFIDFRetriever`
* Attempt to de-serialize it from an untrusted source that contains a
malicious payload