Commit Graph

261 Commits

Author SHA1 Message Date
Harrison Chase
3a75d59c3d searx - docs 2023-06-18 16:45:42 -07:00
Harrison Chase
a8cb9ee013
Harrison/gdrive enhancements (#6375)
Co-authored-by: Matt Robinson <mrobinson@unstructuredai.io>
2023-06-18 11:07:23 -07:00
Lance Martin
370becdfc2
Add self query retriever example with MD header splitting (#6359)
Flesh out the notebook example for `MarkdownHeaderTextSplitter`
2023-06-17 21:40:20 -07:00
Lance Martin
2c97fbabbd
Update MD header text splitter notebook (#6339)
Highlight use case for maintaining header groups when splitting.
2023-06-17 13:19:27 -07:00
Harrison Chase
a2bbe3dda4
Harrison/mmr support for opensearch (#6349)
Co-authored-by: Mehmet Öner Yalçın <oneryalcin@gmail.com>
2023-06-17 12:22:37 -07:00
Harrison Chase
680d6bbbf8 fix titles in documentation 2023-06-17 11:09:11 -07:00
Saba Sturua
427551eabf
DocArray as a Retriever (#6031)
## DocArray as a Retriever

[DocArray](https://github.com/docarray/docarray) is an open-source tool
for managing your multi-modal data. It offers flexibility to store and
search through your data using various document index backends. This PR
introduces `DocArrayRetriever` - which works with any available backend
and serves as a retriever for Langchain apps.

Also, I added 2 notebooks:
DocArray Backends - intro to all 5 currently supported backends, how to
initialize, index, and use them as a retriever
DocArray Usage - showcasing what additional search parameters you can
pass to create versatile retrievers

Example:
```python
from docarray.index import InMemoryExactNNIndex
from docarray import BaseDoc, DocList
from docarray.typing import NdArray
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.retrievers import DocArrayRetriever


# define document schema
class MyDoc(BaseDoc):
    description: str
    description_embedding: NdArray[1536]


embeddings = OpenAIEmbeddings()
# create documents
descriptions = ["description 1", "description 2"]
desc_embeddings = embeddings.embed_documents(texts=descriptions)
docs = DocList[MyDoc](
    [
        MyDoc(description=desc, description_embedding=embedding)
        for desc, embedding in zip(descriptions, desc_embeddings)
    ]
)

# initialize document index with data
db = InMemoryExactNNIndex[MyDoc](docs)

# create a retriever
retriever = DocArrayRetriever(
    index=db,
    embeddings=embeddings,
    search_field="description_embedding",
    content_field="description",
)

# find the relevant document
doc = retriever.get_relevant_documents("action movies")
print(doc)
```

#### Who can review?

@dev2049

---------

Signed-off-by: jupyterjazz <saba.sturua@jina.ai>
2023-06-17 09:09:33 -07:00
Francisco Ingham
83eea230f3
changed height in the nb example (#6327)
changed height in the example to a more reasonable number (from 9 feet
to 6 feet)
2023-06-17 00:05:48 -07:00
Harrison Chase
af18413d97
Harrison/deeplake new features (#6263)
Co-authored-by: adilkhan <adilkhan.sarsen@nu.edu.kz>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
2023-06-16 17:53:55 -07:00
ljeagle
ad324a39ae
Improve the performance of add_texts interface and upgrade the AwaDB from 0.3.2 to 0.3.3 (#6316)
1. Changed the implementation of add_texts interface for the AwaDB
vector store in order to improve the performance
2. Upgrade the AwaDB from 0.3.2 to 0.3.3

---------

Co-authored-by: vincent <awadb.vincent@gmail.com>
2023-06-16 16:50:01 -07:00
Davis Chase
87e502c6bc
Doc refactor (#6300)
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2023-06-16 11:52:56 -07:00