Commit Graph

247 Commits

Author SHA1 Message Date
Leonid Ganeline
95dc90609e
experimental[patch]: prompts import fix (#20534)
Replaced `from langchain.prompts` with `from langchain_core.prompts`
where it is appropriate.
Most of the changes go to `langchain_experimental`
Similar to #20348
2024-04-18 16:09:11 -04:00
ccurme
38faa74c23
community[patch]: update use of deprecated llm methods (#20393)
.predict and .predict_messages for BaseLanguageModel and BaseChatModel
2024-04-12 17:28:23 -04:00
Leonid Ganeline
e512d3c6a6
langchain: callbacks imports fix (#20348)
Replaced all `from langchain.callbacks` into `from
langchain_core.callbacks` .
Changes in the `langchain` and `langchain_experimental`

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-04-12 20:13:14 +00:00
Tomaz Bratanic
a1b105ac00
experimental[patch]: Skip pydantic validation for llm graph transformer and fix JSON response where possible (#19915)
LLMs might sometimes return invalid response for LLM graph transformer.
Instead of failing due to pydantic validation, we skip it and manually
check and optionally fix error where we can, so that more information
gets extracted
2024-04-12 11:29:25 -07:00
Bagatur
2d83505be9
experimental[patch]: Release 0.0.57 (#20243) 2024-04-09 17:08:01 -05:00
Erick Friis
f0d5b59962
core[patch]: remove requests (#19891)
Removes required usage of `requests` from `langchain-core`, all of which
has been deprecated.

- removes Tracer V1 implementations
- removes old `try_load_from_hub` github-based hub implementations

Removal done in a way where imports will still succeed, and usage will
fail with a `RuntimeError`.
2024-04-02 20:28:10 +00:00
Bagatur
003c98e5b4
experimental[patch]: Release 0.0.56 (#19840) 2024-03-31 22:00:59 -07:00
LunarECL
b7d180a70d
experimental[minor]: Create Closed Captioning Chain for .mp4 videos (#14059)
Description: Video imagery to text (Closed Captioning)
This pull request introduces the VideoCaptioningChain, a tool for
automated video captioning. It processes audio and video to generate
subtitles and closed captions, merging them into a single SRT output.

Issue: https://github.com/langchain-ai/langchain/issues/11770
Dependencies: opencv-python, ffmpeg-python, assemblyai, transformers,
pillow, torch, openai
Tag maintainer:
@baskaryan
@hwchase17


Hello!

We are a group of students from the University of Toronto
(@LunarECL, @TomSadan, @nicoledroi1, @A2113S) that want to make a
contribution to the LangChain community! We have ran make format, make
lint and make test locally before submitting the PR. To our knowledge,
our changes do not introduce any new errors.

Thank you for taking the time to review our PR!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-30 01:57:53 +00:00
Kirushikesh DB
12861273e1
experimental[patch]: Removed 'SQLResults:' from the LLMResponse in SQLDatabaseChain (#17104)
**Description:** 
When using the SQLDatabaseChain with Llama2-70b LLM and, SQLite
database. I was getting `Warning: You can only execute one statement at
a time.`.

```
from langchain.sql_database import SQLDatabase
from langchain_experimental.sql import SQLDatabaseChain

sql_database_path = '/dccstor/mmdataretrieval/mm_dataset/swimming_record/rag_data/swimmingdataset.db'
sql_db = get_database(sql_database_path)
db_chain = SQLDatabaseChain.from_llm(mistral, sql_db, verbose=True, callbacks = [callback_obj])
db_chain.invoke({
    "query": "What is the best time of Lance Larson in men's 100 meter butterfly competition?"
})
```
Error:
```
Warning                                   Traceback (most recent call last)
Cell In[31], line 3
      1 import langchain
      2 langchain.debug=False
----> 3 db_chain.invoke({
      4     "query": "What is the best time of Lance Larson in men's 100 meter butterfly competition?"
      5 })

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain/chains/base.py:162, in Chain.invoke(self, input, config, **kwargs)
    160 except BaseException as e:
    161     run_manager.on_chain_error(e)
--> 162     raise e
    163 run_manager.on_chain_end(outputs)
    164 final_outputs: Dict[str, Any] = self.prep_outputs(
    165     inputs, outputs, return_only_outputs
    166 )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain/chains/base.py:156, in Chain.invoke(self, input, config, **kwargs)
    149 run_manager = callback_manager.on_chain_start(
    150     dumpd(self),
    151     inputs,
    152     name=run_name,
    153 )
    154 try:
    155     outputs = (
--> 156         self._call(inputs, run_manager=run_manager)
    157         if new_arg_supported
    158         else self._call(inputs)
    159     )
    160 except BaseException as e:
    161     run_manager.on_chain_error(e)

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_experimental/sql/base.py:198, in SQLDatabaseChain._call(self, inputs, run_manager)
    194 except Exception as exc:
    195     # Append intermediate steps to exception, to aid in logging and later
    196     # improvement of few shot prompt seeds
    197     exc.intermediate_steps = intermediate_steps  # type: ignore
--> 198     raise exc

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_experimental/sql/base.py:143, in SQLDatabaseChain._call(self, inputs, run_manager)
    139     intermediate_steps.append(
    140         sql_cmd
    141     )  # output: sql generation (no checker)
    142     intermediate_steps.append({"sql_cmd": sql_cmd})  # input: sql exec
--> 143     result = self.database.run(sql_cmd)
    144     intermediate_steps.append(str(result))  # output: sql exec
    145 else:

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_community/utilities/sql_database.py:436, in SQLDatabase.run(self, command, fetch, include_columns)
    425 def run(
    426     self,
    427     command: str,
    428     fetch: Literal["all", "one"] = "all",
    429     include_columns: bool = False,
    430 ) -> str:
    431     """Execute a SQL command and return a string representing the results.
    432 
    433     If the statement returns rows, a string of the results is returned.
    434     If the statement returns no rows, an empty string is returned.
    435     """
--> 436     result = self._execute(command, fetch)
    438     res = [
    439         {
    440             column: truncate_word(value, length=self._max_string_length)
   (...)
    443         for r in result
    444     ]
    446     if not include_columns:

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/langchain_community/utilities/sql_database.py:413, in SQLDatabase._execute(self, command, fetch)
    410     elif self.dialect == "postgresql":  # postgresql
    411         connection.exec_driver_sql("SET search_path TO %s", (self._schema,))
--> 413 cursor = connection.execute(text(command))
    414 if cursor.returns_rows:
    415     if fetch == "all":

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1416, in Connection.execute(self, statement, parameters, execution_options)
   1414     raise exc.ObjectNotExecutableError(statement) from err
   1415 else:
-> 1416     return meth(
   1417         self,
   1418         distilled_parameters,
   1419         execution_options or NO_OPTIONS,
   1420     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/sql/elements.py:516, in ClauseElement._execute_on_connection(self, connection, distilled_params, execution_options)
    514     if TYPE_CHECKING:
    515         assert isinstance(self, Executable)
--> 516     return connection._execute_clauseelement(
    517         self, distilled_params, execution_options
    518     )
    519 else:
    520     raise exc.ObjectNotExecutableError(self)

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1639, in Connection._execute_clauseelement(self, elem, distilled_parameters, execution_options)
   1627 compiled_cache: Optional[CompiledCacheType] = execution_options.get(
   1628     "compiled_cache", self.engine._compiled_cache
   1629 )
   1631 compiled_sql, extracted_params, cache_hit = elem._compile_w_cache(
   1632     dialect=dialect,
   1633     compiled_cache=compiled_cache,
   (...)
   1637     linting=self.dialect.compiler_linting | compiler.WARN_LINTING,
   1638 )
-> 1639 ret = self._execute_context(
   1640     dialect,
   1641     dialect.execution_ctx_cls._init_compiled,
   1642     compiled_sql,
   1643     distilled_parameters,
   1644     execution_options,
   1645     compiled_sql,
   1646     distilled_parameters,
   1647     elem,
   1648     extracted_params,
   1649     cache_hit=cache_hit,
   1650 )
   1651 if has_events:
   1652     self.dispatch.after_execute(
   1653         self,
   1654         elem,
   (...)
   1658         ret,
   1659     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1848, in Connection._execute_context(self, dialect, constructor, statement, parameters, execution_options, *args, **kw)
   1843     return self._exec_insertmany_context(
   1844         dialect,
   1845         context,
   1846     )
   1847 else:
-> 1848     return self._exec_single_context(
   1849         dialect, context, statement, parameters
   1850     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1988, in Connection._exec_single_context(self, dialect, context, statement, parameters)
   1985     result = context._setup_result_proxy()
   1987 except BaseException as e:
-> 1988     self._handle_dbapi_exception(
   1989         e, str_statement, effective_parameters, cursor, context
   1990     )
   1992 return result

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:2346, in Connection._handle_dbapi_exception(self, e, statement, parameters, cursor, context, is_sub_exec)
   2344     else:
   2345         assert exc_info[1] is not None
-> 2346         raise exc_info[1].with_traceback(exc_info[2])
   2347 finally:
   2348     del self._reentrant_error

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/base.py:1969, in Connection._exec_single_context(self, dialect, context, statement, parameters)
   1967                 break
   1968     if not evt_handled:
-> 1969         self.dialect.do_execute(
   1970             cursor, str_statement, effective_parameters, context
   1971         )
   1973 if self._has_events or self.engine._has_events:
   1974     self.dispatch.after_cursor_execute(
   1975         self,
   1976         cursor,
   (...)
   1980         context.executemany,
   1981     )

File ~/.conda/envs/guardrails1/lib/python3.9/site-packages/sqlalchemy/engine/default.py:922, in DefaultDialect.do_execute(self, cursor, statement, parameters, context)
    921 def do_execute(self, cursor, statement, parameters, context=None):
--> 922     cursor.execute(statement, parameters)

Warning: You can only execute one statement at a time.
```
**Issue:** 
The Error occurs because when generating the SQLQuery, the llm_input
includes the stop character of "\nSQLResult:", so for this user query
the LLM generated response is **SELECT Time FROM men_butterfly_100m
WHERE Swimmer = 'Lance Larson';\nSQLResult:** it is required to remove
the SQLResult suffix on the llm response before executing it on the
database.

```
llm_inputs = {
            "input": input_text,
            "top_k": str(self.top_k),
            "dialect": self.database.dialect,
            "table_info": table_info,
            "stop": ["\nSQLResult:"],
        }

sql_cmd = self.llm_chain.predict(
                callbacks=_run_manager.get_child(),
                **llm_inputs,
            ).strip()

if SQL_RESULT in sql_cmd:
    sql_cmd = sql_cmd.split(SQL_RESULT)[0].strip()
result = self.database.run(sql_cmd)
```


<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 01:22:35 -07:00
T Cramer
540ebf35a9
community[patch]: Add explicit error message to Bedrock error output. (#17328)
- **Description:** Propagate Bedrock errors into Langchain explicitly.
Use-case: unset region error is hidden behind 'Could not load
credentials...' message
- **Issue:**
[17654](https://github.com/langchain-ai/langchain/issues/17654)
  - **Dependencies:** None

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-29 03:07:33 +00:00
Luca Dorigo
f19229c564
core[patch]: fix beta, deprecated typing (#18877)
**Description:** 

While not technically incorrect, the TypeVar used for the `@beta`
decorator prevented pyright (and thus most vscode users) from correctly
seeing the types of functions/classes decorated with `@beta`.

This is in part due to a small bug in pyright
(https://github.com/microsoft/pyright/issues/7448 ) - however, the
`Type` bound in the typevar `C = TypeVar("C", Type, Callable)` is not
doing anything - classes are `Callables` by default, so by my
understanding binding to `Type` does not actually provide any more
safety - the modified annotation still works correctly for both
functions, properties, and classes.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-28 22:33:43 +00:00
Tomaz Bratanic
b04e663426
experimental[patch]: Flatten relationships in LLM graph transformer (#19642) 2024-03-27 19:35:34 -07:00
Juan Jose Miguel Ovalle Villamil
1fe10a3e3d
experimental[patch]: Enhance LLMGraphTransformer with async processing and improved readability (#19205)
- [x] **PR title**: "experimental: Enhance LLMGraphTransformer with
async processing and improved readability"


- [x] **PR message**: 
- **Description:** This pull request refactors the `process_response`
and `convert_to_graph_documents` methods in the LLMGraphTransformer
class to improve code readability and adds async versions of these
methods for concurrent processing.
    The main changes include:
- Simplifying list comprehensions and conditional logic in the
process_response method for better readability.
- Adding async versions aprocess_response and
aconvert_to_graph_documents to enable concurrent processing of
documents.
These enhancements aim to improve the overall efficiency and
maintainability of the `LLMGraphTransformer` class.
  - **Issue:** N/A
  - **Dependencies:** No additional dependencies required.
  - **Twitter handle:** @jjovalle99


- [x] **Add tests and docs**: N/A (This PR does not introduce a new
integration)


- [x] **Lint and test**: Ran make format, make lint, and make test from
the root of the modified package(s). All tests pass successfully.

Additional notes:

- The changes made in this PR are backwards compatible and do not
introduce any breaking changes.
- The PR touches only the `LLMGraphTransformer` class within the
experimental package.

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-03-26 23:40:21 -07:00
Leonid Ganeline
3dc0f3c371
experimental[patch]: PromptTemplate import fix (#19617)
Changed import of `PromptTemplate` from `langchain` to `langchain_core`
in `langchain_experimental`
2024-03-26 17:03:13 -07:00
Leonid Ganeline
4159a4723c
experimental[patch]: update module doc strings (#19539)
Added missed module descriptions. Fixed format.
2024-03-26 10:38:10 -04:00
Bagatur
3fa711dce0
experimental[patch]: Release 0.0.55 (#19353) 2024-03-20 13:06:39 -07:00
Zihong
ff31cc1648
experimental: update the notebook link of semantic chunk. (#19253)
update the notebook link of semantic chunk.
2024-03-19 07:24:51 -04:00
Cycle
77868b1974
experimental: add buffer_size hyperparameter to SemanticChunker as in source video (#19208)
add buffer_size hyperparameter which used in combine_sentences function
2024-03-19 03:54:20 +00:00
Erick Friis
781aee0068
community, langchain, infra: revert store extended test deps outside of poetry (#19153)
Reverts langchain-ai/langchain#18995

Because it makes installing dependencies in python 3.11 extended testing
take 80 minutes
2024-03-15 17:10:47 +00:00
Erick Friis
9e569d85a4
community, langchain, infra: store extended test deps outside of poetry (#18995)
poetry can't reliably handle resolving the number of optional "extended
test" dependencies we have. If we instead just rely on pip to install
extended test deps in CI, this isn't an issue.
2024-03-15 05:55:30 +00:00
Erick Friis
2ffb2144a6
experimental[patch]: release 0.0.54 (#19000) 2024-03-13 00:38:46 +00:00
Tomaz Bratanic
cda43c5a11
experimental[patch]: Fix LLM graph transformer default prompt (#18856)
Some LLMs do not allow multiple user messages in sequence.
2024-03-11 20:11:52 -07:00
Tomaz Bratanic
246724faab
LLM graph transformer prompt engineering (#18843)
A bit of prompt engineering to improve results
2024-03-09 11:27:16 -08:00
Alexander Dicke
66576948e0
experimental[minor]: adds mixtral wrapper (#17423)
**Description:** Adds a chat wrapper for Mixtral models using the
[prompt
template](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#instruction-format).

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-03-08 17:14:23 -08:00
Tomaz Bratanic
c8c592d3f1
experimental[minor]: Add LLM graph transformer (#18733)
Add a class that constructs knowledge graphs based on text using an LLM.
2024-03-07 20:52:53 -08:00
Tomaz Bratanic
010a234f1e
docs: Fix diffbot graph transformer description (#18736)
The previous docstring was invalid
2024-03-07 19:25:41 -08:00
Massimiliano Pronesti
3b975c6ebe
experimental[minor]: add support for modin in pandas agent (#18749)
Added support for Intel's
[modin](https://github.com/modin-project/modin) in
`create_pandas_dataframe_agent`.
2024-03-07 19:23:07 -08:00
Erick Friis
4ac2cb4adc
anthropic[minor]: add tool calling (#18554) 2024-03-05 08:30:16 -08:00
Bagatur
5efb5c099f
text-splitters[minor], langchain[minor], community[patch], templates, docs: langchain-text-splitters 0.0.1 (#18346) 2024-02-29 18:33:21 -08:00
Bagatur
68ad3414a2
experimental[patch]: Release 0.0.53 (#18330) 2024-02-29 09:13:21 -08:00
matt haigh
a4896da2a0
Experimental: Add other threshold types to SemanticChunker (#16807)
**Description**
Adding different threshold types to the semantic chunker. I’ve had much
better and predictable performance when using standard deviations
instead of percentiles.


![image](https://github.com/langchain-ai/langchain/assets/44395485/066e84a8-460e-4da5-9fa1-4ff79a1941c5)

For all the documents I’ve tried, the distribution of distances look
similar to the above: positively skewed normal distribution. All skews
I’ve seen are less than 1 so that explains why standard deviations
perform well, but I’ve included IQR if anyone wants something more
robust.

Also, using the percentile method backwards, you can declare the number
of clusters and use semantic chunking to get an ‘optimal’ splitting.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-26 13:50:48 -08:00
Leonid Ganeline
3f6bf852ea
experimental: docstrings update (#18048)
Added missed docstrings. Formatted docsctrings to the consistent format.
2024-02-23 21:24:16 -05:00
Erick Friis
ed789be8f4
docs, templates: update schema imports to core (#17885)
- chat models, messages
- documents
- agentaction/finish
- baseretriever,document
- stroutputparser
- more messages
- basemessage
- format_document
- baseoutputparser

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-22 15:58:44 -08:00
Bagatur
5ed16adbde
experimental[patch]: Release 0.0.52 (#17763) 2024-02-19 13:12:22 -08:00
Pranav Agarwal
86ae48b781
experimental[minor]: Amazon Personalize support (#17436)
## Amazon Personalize support on Langchain

This PR is a successor to this PR -
https://github.com/langchain-ai/langchain/pull/13216

This PR introduces an integration with [Amazon
Personalize](https://aws.amazon.com/personalize/) to help you to
retrieve recommendations and use them in your natural language
applications. This integration provides two new components:

1. An `AmazonPersonalize` client, that provides a wrapper around the
Amazon Personalize API.
2. An `AmazonPersonalizeChain`, that provides a chain to pull in
recommendations using the client, and then generating the response in
natural language.

We have added this to langchain_experimental since there was feedback
from the previous PR about having this support in experimental rather
than the core or community extensions.

Here is some sample code to explain the usage.

```python

from langchain_experimental.recommenders import AmazonPersonalize
from langchain_experimental.recommenders import AmazonPersonalizeChain
from langchain.llms.bedrock import Bedrock

recommender_arn = "<insert_arn>"

client=AmazonPersonalize(
    credentials_profile_name="default",
    region_name="us-west-2",
    recommender_arn=recommender_arn
)
bedrock_llm = Bedrock(
    model_id="anthropic.claude-v2", 
    region_name="us-west-2"
)

chain = AmazonPersonalizeChain.from_llm(
    llm=bedrock_llm, 
    client=client
)
response = chain({'user_id': '1'})
```


Reviewer: @3coins
2024-02-19 10:36:37 -08:00
William FH
64743dea14
core[patch], community[patch], langchain[patch], experimental[patch], robocorp[patch]: bump LangSmith 0.1.* (#17567) 2024-02-15 23:17:59 -07:00
Mattt394
7c6009b76f
experimental[patch]: Fixed typos in SmartLLMChain ideation and critique prompts (#11507)
Noticed and fixed a few typos in the SmartLLMChain default ideation and
critique prompts

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-14 13:20:10 -08:00
DanisJiang
de9a6cdf16
experimental[patch]: Enhance protection against arbitrary code execution in PALChain (#17091)
- **Description:** Block some ways to trigger arbitrary code execution
bug in PALChain.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-02-14 11:44:07 -08:00
Bagatur
b5d3416563
experimental[patch]: Release 0.0.51 (#17484) 2024-02-13 13:14:38 -08:00
Bagatur
c0ce93236a
experimental[patch]: fix zero-shot pandas agent (#17442) 2024-02-12 21:58:35 -08:00
Theo / Taeyoon Kang
1987f905ed
core[patch]: Support .yml extension for YAML (#16783)
- **Description:**

[AS-IS] When dealing with a yaml file, the extension must be .yaml.  

[TO-BE] In the absence of extension length constraints in the OS, the
extension of the YAML file is yaml, but control over the yml extension
must still be made.

It's as if it's an error because it's a .jpg extension in jpeg support.

  - **Issue:** - 

  - **Dependencies:**
no dependencies required for this change,
2024-02-12 19:57:20 -08:00
Erick Friis
3a2eb6e12b
infra: add print rule to ruff (#16221)
Added noqa for existing prints. Can slowly remove / will prevent more
being intro'd
2024-02-09 16:13:30 -08:00
Charlie Marsh
24c0bab57b
infra, multiple: Upgrade configuration for Ruff v0.2.0 (#16905)
## Summary

This PR upgrades LangChain's Ruff configuration in preparation for
Ruff's v0.2.0 release. (The changes are compatible with Ruff v0.1.5,
which LangChain uses today.) Specifically, we're now warning when
linter-only options are specified under `[tool.ruff]` instead of
`[tool.ruff.lint]`.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-09 14:28:02 -08:00
Eugene Yurtsev
780e84ae79
community[minor]: SQLDatabase Add fetch mode cursor, query parameters, query by selectable, expose execution options, and documentation (#17191)
- **Description:** Improve `SQLDatabase` adapter component to promote
code re-use, see
[suggestion](https://github.com/langchain-ai/langchain/pull/16246#pullrequestreview-1846590962).
  - **Needed by:** GH-16246
  - **Addressed to:** @baskaryan, @cbornet 

## Details
- Add `cursor` fetch mode
- Accept SQL query parameters
- Accept both `str` and SQLAlchemy selectables as query expression
- Expose `execution_options`
- Documentation page (notebook) about `SQLDatabase` [^1]
See [About
SQLDatabase](https://github.com/langchain-ai/langchain/blob/c1c7b763/docs/docs/integrations/tools/sql_database.ipynb).

[^1]: Apparently there hasn't been any yet?

---------

Co-authored-by: Andreas Motl <andreas.motl@crate.io>
2024-02-07 22:23:43 -05:00
Erick Friis
22b6a03a28
infra: read min versions (#17135) 2024-02-06 16:05:11 -08:00
Leonid Ganeline
563f325034
experimental[patch]: fixed import in experimental (#17078) 2024-02-05 17:47:13 -08:00
Giulio Zani
9f0b63dba0
experimental[patch]: Fixes issue #17060 (#17062)
As described in issue #17060, in the case in which text has only one
sentence the following function fails. Checking for that and adding a
return case fixed the issue.

```python
    def split_text(self, text: str) -> List[str]:
        """Split text into multiple components."""
        # Splitting the essay on '.', '?', and '!'
        single_sentences_list = re.split(r"(?<=[.?!])\s+", text)
        sentences = [
            {"sentence": x, "index": i} for i, x in enumerate(single_sentences_list)
        ]
        sentences = combine_sentences(sentences)
        embeddings = self.embeddings.embed_documents(
            [x["combined_sentence"] for x in sentences]
        )
        for i, sentence in enumerate(sentences):
            sentence["combined_sentence_embedding"] = embeddings[i]
        distances, sentences = calculate_cosine_distances(sentences)
        start_index = 0

        # Create a list to hold the grouped sentences
        chunks = []
        breakpoint_percentile_threshold = 95
        breakpoint_distance_threshold = np.percentile(
            distances, breakpoint_percentile_threshold
        )  # If you want more chunks, lower the percentile cutoff

        indices_above_thresh = [
            i for i, x in enumerate(distances) if x > breakpoint_distance_threshold
        ]  # The indices of those breakpoints on your list

        # Iterate through the breakpoints to slice the sentences
        for index in indices_above_thresh:
            # The end index is the current breakpoint
            end_index = index

            # Slice the sentence_dicts from the current start index to the end index
            group = sentences[start_index : end_index + 1]
            combined_text = " ".join([d["sentence"] for d in group])
            chunks.append(combined_text)

            # Update the start index for the next group
            start_index = index + 1

        # The last group, if any sentences remain
        if start_index < len(sentences):
            combined_text = " ".join([d["sentence"] for d in sentences[start_index:]])
            chunks.append(combined_text)
        return chunks
```

Co-authored-by: Giulio Zani <salamanderxing@Giulios-MBP.homenet.telecomitalia.it>
2024-02-05 16:18:57 -08:00
Bagatur
7d03d8f586
docs: fix docstring examples (#16889) 2024-02-01 10:17:26 -08:00
Bagatur
c2d09fb151
infra: bump exp min test reqs (#16884) 2024-02-01 08:35:21 -08:00
Bagatur
65ba5c220b
experimental[patch]: Release 0.0.50 (#16883) 2024-02-01 08:27:39 -08:00