Commit Graph

102 Commits

Author SHA1 Message Date
Raghav Dixit
6c18f73ca5
community[patch]: LanceDB integration improvements/fixes (#16173)
Hi, I'm from the LanceDB team.

Improves LanceDB integration by making it easier to use - now you aren't
required to create tables manually and pass them in the constructor,
although that is still backward compatible.

Bug fix - pandas was being used even though it's not a dependency for
LanceDB or langchain

PS - this issue was raised a few months ago but lost traction. It is a
feature improvement for our users kindly review this , Thanks !
2024-02-19 10:22:02 -08:00
Guangdong Liu
73edf17b4e
community[minor]: Add Apache Doris as vector store (#17527)
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-18 12:05:58 -07:00
Christophe Bornet
19ebc7418e
community: Use _AstraDBCollectionEnvironment in AstraDB VectorStore (community) (#17635)
Another PR will be done for the langchain-astradb package.

Note: for future PRs, devs will be done in the partner package only. This one is just to align with the rest of the components in the community package and it fixes a bunch of issues.
2024-02-16 11:28:16 -05:00
Krista Pratico
bf8e3c6dd1
community[patch]: add fixes for AzureSearch after update to stable azure-search-documents library (#17599)
- **Description:** Addresses the bugs described in linked issue where an
import was erroneously removed and the rename of a keyword argument was
missed when migrating from beta --> stable of the azure-search-documents
package
- **Issue:** https://github.com/langchain-ai/langchain/issues/17598
- **Dependencies:** N/A
- **Twitter handle:** N/A
2024-02-15 22:23:52 -08:00
morgana
9d7ca7df6e
community[patch]: update copy of metadata in rockset vectorstore integration (#17612)
- **Description:** This fixes an issue with working with RecordManager.
RecordManager was generating new hashes on documents because `add_texts`
was modifying the metadata directly. Additionally moved some tests to
unit tests since that was a more appropriate home.
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** `@_morgan_adams_`
2024-02-15 23:13:40 -07:00
Stefano Lottini
5240ecab99
astradb: bootstrapping Astra DB as Partner Package (#16875)
**Description:** This PR introduces a new "Astra DB" Partner Package.

So far only the vector store class is _duplicated_ there, all others
following once this is validated and established.

Along with the move to separate package, incidentally, the class name
will change `AstraDB` => `AstraDBVectorStore`.

The strategy has been to duplicate the module (with prospected removal
from community at LangChain 0.2). Until then, the code will be kept in
sync with minimal, known differences (there is a makefile target to
automate drift control. Out of convenience with this check, the
community package has a class `AstraDBVectorStore` aliased to `AstraDB`
at the end of the module).

With this PR several bugfixes and improvement come to the vector store,
as well as a reshuffling of the doc pages/notebooks (Astra and
Cassandra) to align with the move to a separate package.

**Dependencies:** A brand new pyproject.toml in the new package, no
changes otherwise.

**Twitter handle:** `@rsprrs`

---------

Co-authored-by: Christophe Bornet <cbornet@hotmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-15 15:50:59 -08:00
volodymyr-memsql
e36bc379f2
community[patch]: Add vector index support to SingleStoreDB VectorStore (#17308)
This pull request introduces support for various Approximate Nearest
Neighbor (ANN) vector index algorithms in the VectorStore class,
starting from version 8.5 of SingleStore DB. Leveraging this enhancement
enables users to harness the power of vector indexing, significantly
boosting search speed, particularly when handling large sets of vectors.

---------

Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-14 11:43:12 -08:00
Ashley Xu
f746a73e26
Add the BQ job usage tracking from LangChain (#17123)
- **Description:**
Add the BQ job usage tracking from LangChain

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-13 14:47:57 -08:00
Max Jakob
ab3d944667
community[patch]: ElasticsearchStore: preserve user headers (#16830)
Users can provide an Elasticsearch connection with custom headers. This
PR makes sure these headers are preserved when adding the langchain user
agent header.
2024-02-13 12:37:35 -08:00
Kapil Sachdeva
cd00a87db7
community[patch] - in FAISS vector store, support passing custom DocStore implementation when using from_xxx methods (#16801)
- **Description:** The from__xx methods of FAISS class have hardcoded
InMemoryStore implementation and thereby not let users pass a custom
DocStore implementation,
  - **Issue:** no referenced issue,
  - **Dependencies:** none,
  - **Twitter handle:** ksachdeva
2024-02-12 19:51:55 -08:00
morgana
722aae4fd1
community: add delete method to rocksetdb vectorstore to support recordmanager (#17030)
- **Description:** This adds a delete method so that rocksetdb can be
used with `RecordManager`.
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** `@_morgan_adams_`

---------

Co-authored-by: Rockset API Bot <admin@rockset.io>
2024-02-12 19:50:20 -08:00
Lingzhen Chen
30af711c34
community[patch]: update AzureSearch class to work with azure-search-documents=11.4.0 (#15659)
- **Description:** Updates
`libs/community/langchain_community/vectorstores/azuresearch.py` to
support the stable version `azure-search-documents=11.4.0`
- **Issue:** https://github.com/langchain-ai/langchain/issues/14534,
https://github.com/langchain-ai/langchain/issues/15039,
https://github.com/langchain-ai/langchain/issues/15355
  - **Dependencies:** azure-search-documents>=11.4.0

---------

Co-authored-by: Clément Tamines <Skar0@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 19:23:35 -08:00
Spencer Kelly
54fa78c887
community[patch]: fixed vector similarity filtering (#16967)
**Description:** changed filtering so that failed filter doesn't add
document to results. Currently filtering is entirely broken and all
documents are returned whether or not they pass the filter.

fixes issue introduced in
https://github.com/langchain-ai/langchain/pull/16190
2024-02-12 14:52:57 -08:00
david-tempelmann
93da18b667
community[minor]: Add mmr and similarity_score_threshold retrieval to DatabricksVectorSearch (#16829)
- **Description:** This PR adds support for `search_types="mmr"` and
`search_type="similarity_score_threshold"` to retrievers using
`DatabricksVectorSearch`,
  - **Issue:** 
  - **Dependencies:**
  - **Twitter handle:**

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-12 12:51:37 -08:00
Erick Friis
3a2eb6e12b
infra: add print rule to ruff (#16221)
Added noqa for existing prints. Can slowly remove / will prevent more
being intro'd
2024-02-09 16:13:30 -08:00
Jael Gu
c07c0da01a
community[patch]: Fix Milvus add texts when ids=None (#17021)
- **Description:** Fix Milvus add texts when ids=None (auto_id=True)

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-02-09 18:48:37 -05:00
Quang Hoa
54c1fb3f25
community[patch]: Make some functions work with Milvus (#10695)
**Description**
Make some functions work with Milvus:
1. get_ids: Get primary keys by field in the metadata
2. delete: Delete one or more entities by ids
3. upsert: Update/Insert one or more entities

**Issue**
None
**Dependencies**
None
**Tag maintainer:**
@hwchase17 
**Twitter handle:**
None

---------

Co-authored-by: HoaNQ9 <hoanq.1811@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-02-09 15:21:31 -08:00
Leonid Ganeline
932c52c333
community[patch]: docstrings (#16810)
- added missed docstrings
- formated docstrings to the consistent form
2024-02-09 12:48:57 -08:00
Kononov Pavel
15bc201967
langchain_community: Fix typo bug (#17324)
Problem from #17095

This error wasn't in the v1.4.0
2024-02-09 11:27:33 -05:00
Bagatur
02ef9164b5
langchain[patch]: expose cohere rerank score, add parent doc param (#16887) 2024-02-08 16:07:18 -08:00
cjpark-data
ce22e10c4b
community[patch]: Fix KeyError 'embedding' (MongoDBAtlasVectorSearch) (#17178)
- **Description:**
Embedding field name was hard-coded named "embedding".
So I suggest that change `res["embedding"]` into
`res[self._embedding_key]`.
  - **Issue:** #17177,
- **Twitter handle:**
[@bagcheoljun17](https://twitter.com/bagcheoljun17)
2024-02-08 12:06:42 -08:00
ByeongUk Choi
b88329e9a5
community[patch]: Implement Unique ID Enforcement in FAISS (#17244)
**Description:**
Implemented unique ID validation in the FAISS component to ensure all
document IDs are distinct. This update resolves issues related to
non-unique IDs, such as inconsistent behavior during deletion processes.
2024-02-08 12:03:33 -08:00
Bagatur
af74301ab9
core[patch], community[patch]: link extraction continue on failure (#17200) 2024-02-07 14:15:30 -08:00
Erick Friis
6ffd5b15bc
pinecone: init pkg (#16556)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-02-05 11:55:01 -08:00
Harrison Chase
4eda647fdd
infra: add -p to mkdir in lint steps (#17013)
Previously, if this did not find a mypy cache then it wouldnt run

this makes it always run

adding mypy ignore comments with existing uncaught issues to unblock other prs

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-02-05 11:22:06 -08:00
Killinsun - Ryota Takeuchi
bcfce146d8
community[patch]: Correct the calling to collection_name in qdrant (#16920)
## Description

In #16608, the calling `collection_name` was wrong.
I made a fix for it. 
Sorry for the inconvenience!

## Issue

https://github.com/langchain-ai/langchain/issues/16962

## Dependencies

N/A



<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Kumar Shivendu <kshivendu1@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-02-04 10:45:35 -08:00
Christophe Bornet
744070ee85
Add async methods for the AstraDB VectorStore (#16391)
- **Description**: fully async versions are available for astrapy 0.7+.
For older astrapy versions or if the user provides a sync client without
an async one, the async methods will call the sync ones wrapped in
`run_in_executor`
  - **Twitter handle:** cbornet_
2024-01-29 20:22:25 -08:00
thiswillbeyourgithub
1d082359ee
community: add support for callable filters in FAISS (#16190)
- **Description:**
Filtering in a FAISS vectorstores is very inflexible and doesn't allow
that many use case. I think supporting callable like this enables a lot:
regular expressions, condition on multiple keys etc. **Note** I had to
manually alter a test. I don't understand if it was falty to begin with
or if there is something funky going on.
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** None

Signed-off-by: thiswillbeyourgithub <26625900+thiswillbeyourgithub@users.noreply.github.com>
2024-01-29 20:05:56 -08:00
Killinsun - Ryota Takeuchi
52f4ad8216
community: Add new fields in metadata for qdrant vector store (#16608)
## Description

The PR is to return the ID and collection name from qdrant client to
metadata field in `Document` class.

## Issue

The motivation is almost same to
[11592](https://github.com/langchain-ai/langchain/issues/11592)

Returning ID is useful to update existing records in a vector store, but
we cannot know them if we use some retrievers.

In order to avoid any conflicts, breaking changes, the new fields in
metadata have a prefix `_`

## Dependencies

N/A

## Twitter handle

@kill_in_sun

<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes if applicable,
  - **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-29 19:59:54 -08:00
Harrison Chase
8457c31c04
community[patch]: activeloop ai tql deprecation (#14634)
Co-authored-by: AdkSarsen <adilkhan@activeloop.ai>
2024-01-29 12:43:54 -08:00
Jael Gu
a1aa3a657c
community[patch]: Milvus supports add & delete texts by ids (#16256)
# Description

To support [langchain
indexing](https://python.langchain.com/docs/modules/data_connection/indexing)
as requested by users, vectorstore Milvus needs to support:
- document addition by id (`add_documents` method with `ids` argument)
- delete by id (`delete` method with `ids` argument)

Example usage:

```python
from langchain.indexes import SQLRecordManager, index
from langchain.schema import Document
from langchain_community.vectorstores import Milvus
from langchain_openai import OpenAIEmbeddings

collection_name = "test_index"
embedding = OpenAIEmbeddings()
vectorstore = Milvus(embedding_function=embedding, collection_name=collection_name)

namespace = f"milvus/{collection_name}"
record_manager = SQLRecordManager(
    namespace, db_url="sqlite:///record_manager_cache.sql"
)
record_manager.create_schema()

doc1 = Document(page_content="kitty", metadata={"source": "kitty.txt"})
doc2 = Document(page_content="doggy", metadata={"source": "doggy.txt"})

index(
    [doc1, doc1, doc2],
    record_manager,
    vectorstore,
    cleanup="incremental",  # None, "incremental", or "full"
    source_id_key="source",
)
```

# Fix issues

Fix https://github.com/milvus-io/milvus/issues/30112

---------

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-29 11:19:50 -08:00
Michard Hugo
e9d3527b79
community[patch]: Add missing async similarity_distance_threshold handling in RedisVectorStoreRetriever (#16359)
Add missing async similarity_distance_threshold handling in
RedisVectorStoreRetriever

- **Description:** added method `_aget_relevant_documents` to
`RedisVectorStoreRetriever` that overrides parent method to add support
of `similarity_distance_threshold` in async mode (as for sync mode)
  - **Issue:** #16099
  - **Dependencies:** N/A
  - **Twitter handle:** N/A
2024-01-29 11:19:30 -08:00
Benito Geordie
f3fdc5c5da
community: Added integrations for ThirdAI's NeuralDB with Retriever and VectorStore frameworks (#15280)
**Description:** Adds ThirdAI NeuralDB retriever and vectorstore
integration. NeuralDB is a CPU-friendly and fine-tunable text retrieval
engine.
2024-01-29 08:35:42 -08:00
Pashva Mehta
22d90800c8
community: Fixed schema discrepancy in from_texts function for weaviate vectorstore (#16693)
* Description: Fixed schema discrepancy in **from_texts** function for
weaviate vectorstore which created a redundant property "key" inside a
class.
* Issue: Fixed: https://github.com/langchain-ai/langchain/issues/16692
* Twitter handle: @pashvamehta1
2024-01-28 16:53:31 -08:00
Rashedul Hasan Rijul
481493dbce
community[patch]: apply embedding functions during query if defined (#16646)
**Description:** This update ensures that the user-defined embedding
function specified during vector store creation is applied during
queries. Previously, even if a custom embedding function was defined at
the time of store creation, Bagel DB would default to using the standard
embedding function during query execution. This pull request addresses
this issue by consistently using the user-defined embedding function for
queries if one has been specified earlier.
2024-01-27 16:46:33 -08:00
Martin Kolb
04651f0248
community[minor]: VectorStore integration for SAP HANA Cloud Vector Engine (#16514)
- **Description:**
This PR adds a VectorStore integration for SAP HANA Cloud Vector Engine,
which is an upcoming feature in the SAP HANA Cloud database
(https://blogs.sap.com/2023/11/02/sap-hana-clouds-vector-engine-announcement/).

  - **Issue:** N/A
- **Dependencies:** [SAP HANA Python
Client](https://pypi.org/project/hdbcli/)
  - **Twitter handle:** @sapopensource

Implementation of the integration:
`libs/community/langchain_community/vectorstores/hanavector.py`

Unit tests:
`libs/community/tests/unit_tests/vectorstores/test_hanavector.py`

Integration tests:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`

Example notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`

Access credentials for execution of the integration tests can be
provided to the maintainers.

---------

Co-authored-by: sascha <sascha.stoll@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:05:07 -08:00
bu2kx
ff3163297b
community[minor]: Add KDBAI vector store (#12797)
Addition of KDBAI vector store (https://kdb.ai).

Dependencies: `kdbai_client` v0.1.2 Python package.

Sample notebook: `docs/docs/integrations/vectorstores/kdbai.ipynb`

Tag maintainer: @bu2kx
Twitter handle: @kxsystems
2024-01-23 18:37:01 -08:00
Noah Stapp
e135e5257c
community[patch]: Include scores in MongoDB Atlas QA chain results (#14666)
Adds the ability to return similarity scores when using
`RetrievalQA.from_chain_type` with `MongoDBAtlasVectorSearch`. Requires
that `return_source_documents=True` is set.

Example use:

```
vector_search = MongoDBAtlasVectorSearch.from_documents(...)

qa = RetrievalQA.from_chain_type(
	llm=OpenAI(), 
	chain_type="stuff", 
	retriever=vector_search.as_retriever(search_kwargs={"additional": ["similarity_score"]}),
	return_source_documents=True
)

...

docs = qa({"query": "..."})

docs["source_documents"][0].metadata["score"] # score will be here
```

I've tested this feature locally, using a MongoDB Atlas Cluster with a
vector search index.
2024-01-23 18:18:28 -08:00
Frank995
5694728816
community[patch]: Implement vector length definition at init time in PGVector for indexing (#16133)
Replace this entire comment with:
- **Description:** allow user to define tVector length in PGVector when
creating the embedding store, this allows for later indexing
  - **Issue:** #16132
  - **Dependencies:** None
2024-01-22 14:32:44 -08:00
s-g-1
fbe592a5ce
community[patch]: fix typo in pgvecto_rs debug msg (#16318)
fixes typo in pip install message for the pgvecto_rs community vector
store
no issues found mentioning this
no dependents changed
2024-01-22 14:01:33 -08:00
Max Jakob
8569b8f680
community[patch]: ElasticsearchStore enable max inner product (#16393)
Enable max inner product for approximate retrieval strategy. For exact
strategy we lack the necessary `maxInnerProduct` function in the
Painless scripting language, this is why we do not add it there.

Similarity docs:
https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Joe McElroy <joseph.mcelroy@elastic.co>
2024-01-22 11:26:18 -08:00
Max Jakob
de209af533
community[patch]: ElasticsearchStore: add relevance function selector (#16378)
Implement similarity function selector for ElasticsearchStore. The
scores coming back from Elasticsearch are already similarities (not
distances) and they are already normalized (see
[docs](https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html#dense-vector-params)).
Hence we leave the scores untouched and just forward them.

This fixes #11539.

However, in hybrid mode (when keyword search and vector search are
involved) Elasticsearch currently returns no scores. This PR adds an
error message around this fact. We need to think a bit more to come up
with a solution for this case.

This PR also corrects a small error in the Elasticsearch integration
test.

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2024-01-22 11:52:20 -07:00
Ofer Mendelevitch
ffae98d371
template: Update Vectara templates (#15363)
fixed multi-query template for Vectara
added self-query template for Vectara

Also added prompt_name parameter to summarization

CC @efriis 
 **Twitter handle:** @ofermend
2024-01-19 17:32:33 -08:00
Andreas Motl
3613d8a2ad
community[patch]: Use SQLAlchemy's bulk_save_objects method to improve insert performance (#16244)
- **Description:** Improve [pgvector vector store
adapter](https://github.com/langchain-ai/langchain/blob/v0.1.1/libs/community/langchain_community/vectorstores/pgvector.py)
to save embeddings in batches, to improve its performance.
  - **Issue:** NA
  - **Dependencies:** NA
  - **References:** https://github.com/crate-workbench/langchain/pull/1


Hi again from the CrateDB team,

following up on GH-16243, this is another minor patch to the pgvector
vector store adapter. Inserting embeddings in batches, using
[SQLAlchemy's
`bulk_save_objects`](https://docs.sqlalchemy.org/en/20/orm/session_api.html#sqlalchemy.orm.Session.bulk_save_objects)
method, can deliver substantial performance gains.

With kind regards,
Andreas.

NB: As I am seeing just now that this method is a legacy feature of SA
2.0, it will need to be reworked on a future iteration. However, it is
not deprecated yet, and I haven't been able to come up with a different
implementation, yet.
2024-01-18 18:35:39 -08:00
Christophe Bornet
fb940d11df
community[patch]: Use newer MetadataVectorCassandraTable in Cassandra vector store (#15987)
as VectorTable is deprecated

Tested manually with `test_cassandra.py` vector store integration test.
2024-01-17 10:37:07 -08:00
Felix Krones
d91126fc64
community[patch]: missing unpack operator for or_clause in pgvector document filter (#16148)
- Fix for #16146 
- Adding unpack operation to "or" and "and" filter for pgvector
retriever. #
2024-01-17 09:10:43 -08:00
James Briggs
ca288d8f2c
community[patch]: add vector param to index query for pinecone vec store (#16054) 2024-01-16 06:12:19 -08:00
Antonio Morales
476fb328ee
community[patch]: implement adelete from VectorStore in Qdrant (#16005)
**Description:**
Implement `adelete` function from `VectorStore` in `Qdrant` to support
other asynchronous flows such as async indexing (`aindex`) which
requires `adelete` to be implemented. Since `Qdrant` can be passed an
async qdrant client, this can be supported easily.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-15 19:57:09 -08:00
高远
061e63eef2
community[minor]: add vikingdb vecstore (#15155)
---------

Co-authored-by: gaoyuan <gaoyuan.20001218@bytedance.com>
2024-01-15 12:34:01 -08:00
盐粒 Yanli
ddf4e7c633
community[minor]: Update pgvecto_rs to use its high level sdk (#15574)
- **Description:** Update pgvecto_rs to use its high level sdk, 
  - **Issue:** fix #15173
2024-01-15 11:41:59 -08:00