- **Description:** Currently the semantic_configurations are not used
when creating an AzureSearch instance, instead creating a new one with
default values. This PR changes the behavior to use the passed
semantic_configurations if it is present, and the existing default
configuration if not.
---------
Co-authored-by: Adam Law <adamlaw@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** The `semantic_hybrid_search_with_score_and_rerank`
method of `AzureSearch` contains a hardcoded field name "metadata" for
the document metadata in the Azure AI Search Index. Adding such a field
is optional when creating an Azure AI Search Index, as other snippets
from `AzureSearch` test for the existence of this field before trying to
access it. Furthermore, the metadata field name shouldn't be hardcoded
as "metadata" and use the `FIELDS_METADATA` variable that defines this
field name instead. In the current implementation, any index without a
metadata field named "metadata" will yield an error if a semantic answer
is returned by the search in
`semantic_hybrid_search_with_score_and_rerank`.
- **Issue:** https://github.com/langchain-ai/langchain/issues/18731
- **Prior fix to this bug:** This bug was fixed in this PR
https://github.com/langchain-ai/langchain/pull/15642 by adding a check
for the existence of the metadata field named `FIELDS_METADATA` and
retrieving a value for the key called "key" in that metadata if it
exists. If the field named `FIELDS_METADATA` was not present, an empty
string was returned. This fix was removed in this PR
https://github.com/langchain-ai/langchain/pull/15659 (see
ed1ffca911#).
@lz-chen: could you confirm this wasn't intentional?
- **New fix to this bug:** I believe there was an oversight in the logic
of the fix from
[#1564](https://github.com/langchain-ai/langchain/pull/15642) which I
explain below.
The `semantic_hybrid_search_with_score_and_rerank` method creates a
dictionary `semantic_answers_dict` with semantic answers returned by the
search as follows.
5c2f7e6b2b/libs/community/langchain_community/vectorstores/azuresearch.py (L574-L581)
The keys in this dictionary are the unique document ids in the index, if
I understand the [documentation of semantic
answers](https://learn.microsoft.com/en-us/azure/search/semantic-answers)
in Azure AI Search correctly. When the method transforms a search result
into a `Document` object, an "answer" key is added to the document's
metadata. The value for this "answer" key should be the semantic answer
returned by the search from this document, if such an answer is
returned. The match between a `Document` object and the semantic answers
returned by the search should be done through the unique document id,
which is used as a key for the `semantic_answers_dict` dictionary. This
id is defined in the search result's field named `FIELDS_ID`. I added a
check to avoid any error in case no field named `FIELDS_ID` exists in a
search result (which shouldn't happen in theory).
A benefit of this approach is that this fix should work whether or not
the Azure AI Search Index contains a metadata field.
@levalencia could you confirm my analysis and test the fix?
@raunakshrivastava7 do you agree with the fix?
Thanks for the help!
- **Description:** Update azuresearch vectorstore from_texts() method to
include fields argument, necessary for creating an Azure AI Search index
with custom fields.
- **Issue:** Currently index fields are fixed to default fields if Azure
Search index is created using from_texts() method
- **Dependencies:** None
- **Twitter handle:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Addresses the bugs described in linked issue where an
import was erroneously removed and the rename of a keyword argument was
missed when migrating from beta --> stable of the azure-search-documents
package
- **Issue:** https://github.com/langchain-ai/langchain/issues/17598
- **Dependencies:** N/A
- **Twitter handle:** N/A
Previously, if this did not find a mypy cache then it wouldnt run
this makes it always run
adding mypy ignore comments with existing uncaught issues to unblock other prs
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Azure Cognitive Search vector DB store performs slow
embedding as it does not utilize the batch embedding functionality. This
PR provide a fix to improve the performance of Azure Search class when
adding documents to the vector search,
- **Issue:** #11313 ,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description:** This PR is to fix a bug in
semantic_hybrid_search_with_score_and_rerank() function in
langchain_community/vectorstores/azuresearch.py. The hardcoded
"metadata" name is replaced with FIELDS_METADATA variable with an if
block to check if the metadata column exists or not.
- **Issue:** Fixed#15581
- **Dependencies:** No
- **Twitter handle:** None
Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>