Issue: `load_qa_chain` is placed in the __init__.py file. As a result,
it is not listed in the API Reference docs.
BTW `load_qa_chain` is heavily presented in the doc examples, but is
missed in API Ref.
Change: moved code from init.py into a new file. Related: #21266
Reverts langchain-ai/langchain#21174
Hey team - going to revert this because it doesn't seem necessary for
testing. We should only be adding optional + extended_testing
dependencies for deps that have extended tests.
otherwise it just increases probability of dependency conflicts in the
community lockfile.
Thank you for contributing to LangChain!
community:baichuan[patch]: standardize init args
updated `baichuan_api_key` so that aliased to `api_key`. Added test that
it continues to set the same underlying attribute. Test checks for
`SecretStr`
updated `temperature` with Pydantic Field, added unit test.
Related to https://github.com/langchain-ai/langchain/issues/20085
If Session and/or keyspace are not provided, they are resolved from
cassio's context. So they are not required.
This change is fully backward compatible.
Issue: the `langkit` package is not presented in the `pyproject.toml`
but it is a requirement for the `WhyLabsCallbackHandler`
Change: added `langkit`
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "langchain-ibm: Add support for ibm-watsonx-ai new
major version"
- [x] **PR message**:
- **Description:** Add support for ibm-watsonx-ai new major version
- **Dependencies:** `ibm_watsonx_ai`
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
The `LocalFileStore` class can be used to create an on-disk
`CacheBackedEmbeddings` cache. The number of files in these embeddings
caches can grow to be quite large over time (hundreds of thousands) as
embeddings are computed for new versions of content, but the embeddings
for old/deprecated content are not removed.
A *least-recently-used* (LRU) cache policy could be applied to the
`LocalFileStore` directory to delete cache entries that have not been
referenced for some time:
```bash
# delete files that have not been accessed in the last 90 days
find embeddings_cache_dir/ -atime 90 -print0 | xargs -0 rm
```
However, most filesystems in enterprise environments disable access time
modification on read to improve performance. As a result, the access
times of these cache entry files are not updated when their values are
read.
To resolve this, this pull request updates the `LocalFileStore`
constructor to offer an `update_atime` parameter that causes access
times to be updated when a cache entry is read.
For example,
```python
file_store = LocalFileStore(temp_dir, update_atime=True)
```
The default is `False`, which retains the original behavior.
**Testing:**
I updated the LocalFileStore unit tests to test the access time update.
Before you could only extract triples (diffbot calls it facts) from
diffbot to avoid isolated nodes. However, sometimes isolated nodes can
still be useful like for prefiltering, so we want to allow users to
extract them if they want. Default behaviour is unchanged.
**Description:** Update unit test for ChatAnthropic
**Issue:** Test for key passed in from the environment should not have
the key initialized in the constructor
**Dependencies:** None
Thank you for contributing to LangChain!
- Oracle AI Vector Search
Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
- Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
This Pull Requests Adds the following functionalities
Oracle AI Vector Search : Vector Store
Oracle AI Vector Search : Document Loader
Oracle AI Vector Search : Document Splitter
Oracle AI Vector Search : Summary
Oracle AI Vector Search : Oracle Embeddings
- We have added unit tests and have our own local unit test suite which
verifies all the code is correct. We have made sure to add guides for
each of the components and one end to end guide that shows how the
entire thing runs.
- We have made sure that make format and make lint run clean.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: skmishraoracle <shailendra.mishra@oracle.com>
Co-authored-by: hroyofc <harichandan.roy@oracle.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Description
Memory return could be set as `str` or `message` by `return_messages`
flag as mentioned in
https://python.langchain.com/docs/modules/memory/#whether-memory-is-a-string-or-a-list-of-messages,
where
`langchain.chains.conversation.memory.ConversationSummaryBufferMemory`
did not implement that.
This commit added `buffer_as_str` and `buffer_as_messages` function, and
`buffer` now affected by `return_messages` flag.
## Example Test Code and Output
```python
# Fix: ConversationSummaryBufferMemory with return_messages flag function
# Test code
from langchain.chains.conversation.memory import ConversationSummaryBufferMemory
from langchain_community.llms.ollama import Ollama
llm = Ollama()
# Create an instance of ConversationSummaryBufferMemory with return_messages set to True
memory = ConversationSummaryBufferMemory(return_messages=True, llm=llm)
# Add user and AI messages to the chat memory
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("what's up?")
# Print the buffer
print("Buffer:")
print(*map(type, memory.buffer), sep="\n")
print(memory.buffer, "\n")
# Print the buffer as a string
print("Buffer as String:")
print(type(memory.buffer_as_str))
print(memory.buffer_as_str, "\n")
# Print the buffer as messages
print("Buffer as Messages:")
print(*map(type, memory.buffer_as_messages), sep="\n")
print(memory.buffer_as_messages, "\n")
# Print the buffer after setting return_messages to False
memory.return_messages = False
print("Buffer after setting return_messages to False:")
print(type(memory.buffer))
print(memory.buffer, "\n")
```
```plaintext
Buffer:
<class 'langchain_core.messages.human.HumanMessage'>
<class 'langchain_core.messages.ai.AIMessage'>
[HumanMessage(content='hi!'), AIMessage(content="what's up?")]
Buffer as String:
<class 'str'>
Human: hi!
AI: what's up?
Buffer as Messages:
<class 'langchain_core.messages.human.HumanMessage'>
<class 'langchain_core.messages.ai.AIMessage'>
[HumanMessage(content='hi!'), AIMessage(content="what's up?")]
Buffer after setting return_messages to False:
<class 'str'>
Human: hi!
AI: what's up?
```
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Issue: we have several helper functions to import third-party libraries
like tools.gmail.utils.import_google in
[community.tools](https://api.python.langchain.com/en/latest/community_api_reference.html#id37).
And we have core.utils.utils.guard_import that works exactly for this
purpose.
The import_<package> functions work inconsistently and rather be private
functions.
Change: replaced these functions with the guard_import function.
Related to #21133
Issues (nit):
1. `utils.guard_import` prints wrong error message when there is an
import `error.` It prints the whole `module_name` but should be only the
first part as the pip package name. E.i. `langchain_core.utils` -> print
not `langchain-core` but `langchain_core.utils`. Also replace '_' with
'-' in the pip package name.
2. it does not handle the `ModuleNotFoundError` which raised if
`guard_import("wrong_module")`
Fixed issues; added ut-s. Controversial: I've reraised
`ModuleNotFoundError` as `ImportError`, since in case of the error, the
proposed action is the same - we need to install a missed package.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Issue: `load_summarize_chain` is placed in the __init__.py file. As a
result, it doesn't listed in the API Reference docs.
Change: moved code from __init__.py into a new file.
# Newline Characters breaking formatting
**Description**:
As you can see in the image below, the formatting in the documentation
is broken. As far as I can see the two added `\n` characters are
breaking the documentation. Therefore I would propose to remove those
![image](https://github.com/langchain-ai/langchain/assets/88305668/23b6e726-71b2-4812-91ea-3e8600683733)
**Dependencies**:
None
**Twitter Handle**
- epu9byj
---------
Co-authored-by: gere <gere@kapo.zh.ch>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
**PR message**:
- **Description:** Corrected a syntax error in the code comments within
the `create_tool_calling_agent` function in the langchain package.
- **Issue:** N/A
- **Dependencies:** No additional dependencies required.
- **Twitter handle:** N/A
This PR fixes#21196.
The error was occurring when calling chat completion API with a chat
history. Indeed, the Mistral API does not accept both `content` and
`tool_calls` in the same body.
This PR removes one of theses variables depending on the necessity.
---------
Co-authored-by: Maxime Perrin <mperrin@doing.fr>
Co-authored-by: Chester Curme <chester.curme@gmail.com>
* Introduce individual `fetch_` methods for easier typing.
* Rework some docstrings to google style
* Move some logic to the tool
* Merge the 2 cassandra utility files
- support two-tuples of any sequence type (eg. json.loads never produces
tuples)
- support type alias for role key
- if id is passed in in dict form use it
- if tool_calls passed in in dict form use them
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>