Commit Graph

137 Commits

Author SHA1 Message Date
axiangcoding
63601551b1
fix(llms): improve the ernie chat model (#9289)
- Description: improve the ernie chat model.
   - fix missing kwargs to payload
   - new test cases
   - add some debug level log
   - improve description
- Issue: None
- Dependencies: None
- Tag maintainer: @baskaryan
2023-08-16 00:48:42 -07:00
Daniel Chalef
1d55141c50
zep/new ZepVectorStore (#9159)
- new ZepVectorStore class
- ZepVectorStore unit tests
- ZepVectorStore demo notebook
- update zep-python to ~1.0.2

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-16 00:23:07 -07:00
Bagatur
9abf60acb6
Bagatur/vectara regression (#9276)
Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
2023-08-15 16:19:46 -07:00
Xiaoyu Xee
b30f449dae
Add dashvector vectorstore (#9163)
## Description
Add `Dashvector` vectorstore for langchain

- [dashvector quick
start](https://help.aliyun.com/document_detail/2510223.html)
- [dashvector package description](https://pypi.org/project/dashvector/)

## How to use
```python
from langchain.vectorstores.dashvector import DashVector

dashvector = DashVector.from_documents(docs, embeddings)
```

---------

Co-authored-by: smallrain.xuxy <smallrain.xuxy@alibaba-inc.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 16:19:30 -07:00
Bagatur
bfbb97b74c
Bagatur/deeplake docs fixes (#9275)
Co-authored-by: adilkhan <adilkhan.sarsen@nu.edu.kz>
2023-08-15 15:56:36 -07:00
Kunj-2206
1b3942ba74
Added BittensorLLM (#9250)
Description: Adding NIBittensorLLM via Validator Endpoint to langchain
llms
Tag maintainer: @Kunj-2206

Maintainer responsibilities:
    Models / Prompts: @hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 15:40:52 -07:00
Toshish Jawale
852722ea45
Improvements in Nebula LLM (#9226)
- Description: Added improvements in Nebula LLM to perform auto-retry;
more generation parameters supported. Conversation is no longer required
to be passed in the LLM object. Examples are updated.
  - Issue: N/A
  - Dependencies: N/A
  - Tag maintainer: @baskaryan 
  - Twitter handle: symbldotai

---------

Co-authored-by: toshishjawale <toshish@symbl.ai>
2023-08-15 15:33:07 -07:00
Bagatur
1aae77f26f
fix context nb (#9267) 2023-08-15 12:53:37 -07:00
Alex Gamble
cf17c58b47
Update documentation for the Context integration with new URL and features (#9259)
Update documentation and URLs for the Langchain Context integration.

We've moved from getcontext.ai to context.ai \o/

Thanks in advance for the review!
2023-08-15 11:38:34 -07:00
Anthony Mahanna
0a04e63811
docs: Update ArangoDB Links (#9251)
ready for review 

- mdx link update
- colab link update
2023-08-15 07:43:47 -07:00
Hech
4b505060bd
fix: max_marginal_relevance_search and docs in Dingo (#9244) 2023-08-15 01:06:06 -07:00
axiangcoding
664ff28cba
feat(llms): support ernie chat (#9114)
Description: support ernie (文心一言) chat model
Related issue: #7990
Dependencies: None
Tag maintainer: @baskaryan
2023-08-15 01:05:46 -07:00
fanyou-wbd
5e43768f61
docs: update LlamaCpp max_tokens args (#9238)
This PR updates documentations only, `max_length` should be `max_tokens`
according to latest LlamaCpp API doc:
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
2023-08-15 00:50:20 -07:00
Joshua Sundance Bailey
ef0664728e
ArcGISLoader update (#9240)
Small bug fixes and added metadata based on user feedback. This PR is
from the author of https://github.com/langchain-ai/langchain/pull/8873 .
2023-08-14 23:44:29 -07:00
Joseph McElroy
eac4ddb4bb
Elasticsearch Store Improvements (#8636)
Todo:
- [x] Connection options (cloud, localhost url, es_connection) support
- [x] Logging support
- [x] Customisable field support
- [x] Distance Similarity support 
- [x] Metadata support
  - [x] Metadata Filter support 
- [x] Retrieval Strategies
  - [x] Approx
  - [x] Approx with Hybrid
  - [x] Exact
  - [x] Custom 
  - [x] ELSER (excluding hybrid as we are working on RRF support)
- [x] integration tests 
- [x] Documentation

👋 this is a contribution to improve Elasticsearch integration with
Langchain. Its based loosely on the changes that are in master but with
some notable changes:

## Package name & design improvements
The import name is now `ElasticsearchStore`, to aid discoverability of
the VectorStore.

```py
## Before
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch, ElasticKnnSearch

## Now
from langchain.vectorstores.elasticsearch import ElasticsearchStore
```

## Retrieval Strategy support
Before we had a number of classes, depending on the strategy you wanted.
`ElasticKnnSearch` for approx, `ElasticVectorSearch` for exact / brute
force.

With `ElasticsearchStore` we have retrieval strategies:

### Approx Example
Default strategy for the vast majority of developers who use
Elasticsearch will be inferring the embeddings from outside of
Elasticsearch. Uses KNN functionality of _search.

```py
        texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index"
        )
        output = docsearch.similarity_search("foo", k=1)
```

### Approx, with hybrid
Developers who want to search, using both the embedding and the text
bm25 match. Its simple to enable.

```py
 texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True)
        )
        output = docsearch.similarity_search("foo", k=1)
```

### Approx, with `query_model_id`
Developers who want to infer within Elasticsearch, using the model
loaded in the ml node.

This relies on the developer to setup the pipeline and index if they
wish to embed the text in Elasticsearch. Example of this in the test.

```py
 texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ApproxRetrievalStrategy(
                query_model_id="sentence-transformers__all-minilm-l6-v2"
            ),
        )
        output = docsearch.similarity_search("foo", k=1)
```

### I want to provide my own custom Elasticsearch Query
You might want to have more control over the query, to perform
multi-phase retrieval such as LTR, linearly boosting on document
parameters like recently updated or geo-distance. You can do this with
`custom_query_fn`

```py
        def my_custom_query(query_body: dict, query: str) -> dict:
            return {"query": {"match": {"text": {"query": "bar"}}}}

        texts = ["foo", "bar", "baz"]
        docsearch = ElasticsearchStore.from_texts(
            texts, FakeEmbeddings(), **elasticsearch_connection, index_name=index_name
        )
        docsearch.similarity_search("foo", k=1, custom_query=my_custom_query)

```

### Exact Example
Developers who have a small dataset in Elasticsearch, dont want the cost
of indexing the dims vs tradeoff on cost at query time. Uses
script_score.

```py
        texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ExactRetrievalStrategy(),
        )
        output = docsearch.similarity_search("foo", k=1)
```

### ELSER Example
Elastic provides its own sparse vector model called ELSER. With these
changes, its really easy to use. The vector store creates a pipeline and
index thats setup for ELSER. All the developer needs to do is configure,
ingest and query via langchain tooling.

```py
texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.SparseVectorStrategy(),
        )
        output = docsearch.similarity_search("foo", k=1)

```

## Architecture
In future, we can introduce new strategies and allow us to not break bwc
as we evolve the index / query strategy.

## Credit
On release, could you credit @elastic and @phoey1 please? Thank you!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 23:42:35 -07:00
Lance Martin
17ae2998e7
Update Ollama docs (#9220)
Based on discussion w/ team.
2023-08-14 13:56:16 -07:00
Krish Dholakia
49f1d8477c
Adding ChatLiteLLM model (#9020)
Description: Adding a langchain integration for the LiteLLM library 
Tag maintainer: @hwchase17, @baskaryan
Twitter handle: @krrish_dh / @Berri_AI

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 07:43:40 -07:00
Emmanuel Gautier
f11e5442d6
docs: update LlamaCpp input args (#9173)
This PR only updates the LlamaCpp args documentation. The input arg has
been flattened.
2023-08-14 07:42:03 -07:00
Massimiliano Pronesti
d95eeaedbe
feat(llms): support vLLM's OpenAI-compatible server (#9179)
This PR aims at supporting [vLLM's OpenAI-compatible server
feature](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html#openai-compatible-server),
i.e. allowing to call vLLM's LLMs like if they were OpenAI's.

I've also udpated the related notebook providing an example usage. At
the moment, vLLM only supports the `Completion` API.
2023-08-13 23:03:05 -07:00
Michael Goin
621da3c164
Adds DeepSparse as an LLM (#9184)
Adds [DeepSparse](https://github.com/neuralmagic/deepsparse) as an LLM
backend. DeepSparse supports running various open-source sparsified
models hosted on [SparseZoo](https://sparsezoo.neuralmagic.com/) for
performance gains on CPUs.

Twitter handles: @mgoin_ @neuralmagic


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-13 22:35:58 -07:00
Bagatur
0fa69d8988
Bagatur/zep python 1.0 (#9186)
Co-authored-by: Daniel Chalef <131175+danielchalef@users.noreply.github.com>
2023-08-13 21:52:53 -07:00
Bagatur
45741bcc1b
Bagatur/vectara nit (#9140)
Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
2023-08-11 15:32:03 -07:00
Dominick DEV
9b64932e55
Add LangChain utility for real-time crypto exchange prices (#4501)
This commit adds the LangChain utility which allows for the real-time
retrieval of cryptocurrency exchange prices. With LangChain, users can
easily access up-to-date pricing information by running the command
".run(from_currency, to_currency)". This new feature provides a
convenient way to stay informed on the latest exchange rates and make
informed decisions when trading crypto.


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 14:45:06 -07:00
Joshua Sundance Bailey
eaa505fb09
Create ArcGISLoader & example notebook (#8873)
- Description: Adds the ArcGISLoader class to
`langchain.document_loaders`
  - Allows users to load data from ArcGIS Online, Portal, and similar
- Users can authenticate with `arcgis.gis.GIS` or retrieve public data
anonymously
  - Uses the `arcgis.features.FeatureLayer` class to retrieve the data
  - Defines the most relevant keywords arguments and accepts `**kwargs`
- Dependencies: Using this class requires `arcgis` and, optionally,
`bs4.BeautifulSoup`.

Tagging maintainers:
  - DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-11 14:33:40 -07:00
Hai The Dude
e4418d1b7e
Added new use case docs for Web Scraping, Chromium loader, BS4 transformer (#8732)
- Description: Added a new use case category called "Web Scraping", and
a tutorial to scrape websites using OpenAI Functions Extraction chain to
the docs.
  - Tag maintainer:@baskaryan @hwchase17 ,
- Twitter handle: https://www.linkedin.com/in/haiphunghiem/ (I'm on
LinkedIn mostly)

---------

Co-authored-by: Lance Martin <lance@langchain.dev>
2023-08-11 11:46:59 -07:00
niklub
16af5f8690
Add LabelStudio integration (#8880)
This PR introduces [Label Studio](https://labelstud.io/) integration
with LangChain via `LabelStudioCallbackHandler`:

- sending data to the Label Studio instance
- labeling dataset for supervised LLM finetuning
- rating model responses
- tracking and displaying chat history
- support for custom data labeling workflow

### Example

```
chat_llm = ChatOpenAI(callbacks=[LabelStudioCallbackHandler(mode="chat")])
chat_llm([
    SystemMessage(content="Always use emojis in your responses."),
        HumanMessage(content="Hey AI, how's your day going?"),
    AIMessage(content="🤖 I don't have feelings, but I'm running smoothly! How can I help you today?"),
        HumanMessage(content="I'm feeling a bit down. Any advice?"),
    AIMessage(content="🤗 I'm sorry to hear that. Remember, it's okay to seek help or talk to someone if you need to. 💬"),
        HumanMessage(content="Can you tell me a joke to lighten the mood?"),
    AIMessage(content="Of course! 🎭 Why did the scarecrow win an award? Because he was outstanding in his field! 🌾"),
        HumanMessage(content="Haha, that was a good one! Thanks for cheering me up."),
    AIMessage(content="Always here to help! 😊 If you need anything else, just let me know."),
        HumanMessage(content="Will do! By the way, can you recommend a good movie?"),
])
```

<img width="906" alt="image"
src="https://github.com/langchain-ai/langchain/assets/6087484/0a1cf559-0bd3-4250-ad96-6e71dbb1d2f3">


### Dependencies
- [label-studio](https://pypi.org/project/label-studio/)
- [label-studio-sdk](https://pypi.org/project/label-studio-sdk/)

https://twitter.com/labelstudiohq

---------

Co-authored-by: nik <nik@heartex.net>
2023-08-11 11:24:10 -07:00
Bagatur
8cb2594562
Bagatur/dingo (#9079)
Co-authored-by: gary <1625721671@qq.com>
2023-08-11 10:54:45 -07:00
Alvaro Bartolome
f7ae183f40
ArgillaCallbackHandler to properly use default values for api_url and api_key (#9113)
As of the recent PR at #9043, after some testing we've realised that the
default values were not being used for `api_key` and `api_url`. Besides
that, the default for `api_key` was set to `argilla.apikey`, but since
the default values are intended for people using the Argilla Quickstart
(easy to run and setup), the defaults should be instead `owner.apikey`
if using Argilla 1.11.0 or higher, or `admin.apikey` if using a lower
version of Argilla.

Additionally, we've removed the f-string replacements from the
docstrings.

---------

Co-authored-by: Gabriel Martin <gabriel@argilla.io>
2023-08-11 09:37:06 -07:00
Bagatur
0e5d09d0da
dalle nb fix (#9125) 2023-08-11 08:21:48 -07:00
Ashutosh Sanzgiri
991b448dfc
minor edits (#9093)
Description:

Minor edit to PR#845

Thanks!
2023-08-10 23:40:36 -07:00
Chenyu Zhao
c0acbdca1b
Update Fireworks model names (#9085) 2023-08-10 19:23:42 -07:00
Charles Lanahan
a2588d6c57
Update openai embeddings notebook with correct embedding model in section 2 (#5831)
In second section it looks like a copy/paste from the first section and
doesn't include the specific embedding model mentioned in the example so
I added it for clarity.
---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 19:02:10 -07:00
Josh Phillips
5fc07fa524
change id column type to uuid to match function (#7456)
The table creation process in these examples commands do not match what
the recently updated functions in these example commands is looking for.
This change updates the type in the table creation command.
Issue Number for my report of the doc problem #7446
@rlancemartin and @eyurtsev I believe this is your area
Twitter: @j1philli

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-10 16:57:19 -07:00
Bidhan Roy
02430e25b6
BagelDB (bageldb.ai), VectorStore integration. (#8971)
- **Description**: [BagelDB](bageldb.ai) a collaborative vector
database. Integrated the bageldb PyPi package with langchain with
related tests and code.

  - **Issue**: Not applicable.
  - **Dependencies**: `betabageldb` PyPi package.
  - **Tag maintainer**: @rlancemartin, @eyurtsev, @baskaryan
  - **Twitter handle**: bageldb_ai (https://twitter.com/BagelDB_ai)
  
We ran `make format`, `make lint` and `make test` locally.

Followed the contribution guideline thoroughly
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

---------

Co-authored-by: Towhid1 <nurulaktertowhid@gmail.com>
2023-08-10 16:48:36 -07:00
Piyush Jain
8eea46ed0e
Bedrock embeddings async methods (#9024)
## Description
This PR adds the `aembed_query` and `aembed_documents` async methods for
improving the embeddings generation for large documents. The
implementation uses asyncio tasks and gather to achieve concurrency as
there is no bedrock async API in boto3.

### Maintainers
@agola11 
@aarora79  

### Open questions
To avoid throttling from the Bedrock API, should there be an option to
limit the concurrency of the calls?
2023-08-10 14:21:03 -07:00
Blake (Yung Cher Ho)
8d351bfc20
Takeoff integration (#9045)
## Description:
This PR adds the Titan Takeoff Server to the available LLMs in
LangChain.

Titan Takeoff is an inference server created by
[TitanML](https://www.titanml.co/) that allows you to deploy large
language models locally on your hardware in a single command. Most
generative model architectures are included, such as Falcon, Llama 2,
GPT2, T5 and many more.

Read more about Titan Takeoff here:
-
[Blog](https://medium.com/@TitanML/introducing-titan-takeoff-6c30e55a8e1e)
- [Docs](https://docs.titanml.co/docs/titan-takeoff/getting-started)

#### Testing
As Titan Takeoff runs locally on port 8000 by default, no network access
is needed. Responses are mocked for testing.

- [x] Make Lint
- [x] Make Format
- [x] Make Test

#### Dependencies
No new dependencies are introduced. However, users will need to install
the titan-iris package in their local environment and start the Titan
Takeoff inferencing server in order to use the Titan Takeoff
integration.

Thanks for your help and please let me know if you have any questions.

cc: @hwchase17 @baskaryan
2023-08-10 10:56:06 -07:00
Luca Foppiano
dfb93dd2b5
Improved grobid documentation (#9025)
- Description: Improvement in the Grobid loader documentation, typos and
suggesting to use the docker image instead of installing Grobid in local
(the documentation was also limited to Mac, while docker allow running
in any platform)
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @whitenoise
2023-08-10 10:47:22 -04:00
Jerzy Czopek
539672a7fd
Feature/fix azureopenai model mappings (#8621)
This pull request aims to ensure that the `OpenAICallbackHandler` can
properly calculate the total cost for Azure OpenAI chat models. The
following changes have resolved this issue:

- The `model_name` has been added to the ChatResult llm_output. Without
this, the default values of `gpt-35-turbo` were applied. This was
causing the total cost for Azure OpenAI's GPT-4 to be significantly
inaccurate.
- A new parameter `model_version` has been added to `AzureChatOpenAI`.
Azure does not include the model version in the response. With the
addition of `model_name`, this is not a significant issue for GPT-4
models, but it's an issue for GPT-3.5-Turbo. Version 0301 (default) of
GPT-3.5-Turbo on Azure has a flat rate of 0.002 per 1k tokens for both
prompt and completion. However, version 0613 introduced a split in
pricing for prompt and completion tokens.
- The `OpenAICallbackHandler` implementation has been updated with the
proper model names, versions, and cost per 1k tokens.

Unit tests have been added to ensure the functionality works as
expected; the Azure ChatOpenAI notebook has been updated with examples.

Maintainers: @hwchase17, @baskaryan

Twitter handle: @jjczopek

---------

Co-authored-by: Jerzy Czopek <jerzy.czopek@avanade.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-09 10:56:15 -07:00
arjunbansal
a2681f950d
add instructions on integrating Log10 (#8938)
- Description: Instruction for integration with Log10: an [open
source](https://github.com/log10-io/log10) proxiless LLM data management
and application development platform that lets you log, debug and tag
your Langchain calls
  - Tag maintainer: @baskaryan
  - Twitter handle: @log10io @coffeephoenix

Several examples showing the integration included
[here](https://github.com/log10-io/log10/tree/main/examples/logging) and
in the PR
2023-08-08 19:15:31 -07:00
Aarav Borthakur
3f64b8a761
Integrate Rockset as a chat history store (#8940)
Description: Adds Rockset as a chat history store
Dependencies: no changes
Tag maintainer: @hwchase17

This PR passes linting and testing. 

I added a test for the integration and an example notebook showing its
use.
2023-08-08 18:54:07 -07:00
Molly Cantillon
99b5a7226c
Weaviate: adding auth example + fixing spelling in ReadME (#8939)
Added basic auth example to Weaviate notebook @baskaryan
2023-08-08 16:24:17 -07:00
Joe Reuter
8f0cd91d57
Airbyte based loaders (#8586)
This PR adds 8 new loaders:
* `AirbyteCDKLoader` This reader can wrap and run all python-based
Airbyte source connectors.
* Separate loaders for the most commonly used APIs:
  * `AirbyteGongLoader`
  * `AirbyteHubspotLoader`
  * `AirbyteSalesforceLoader`
  * `AirbyteShopifyLoader`
  * `AirbyteStripeLoader`
  * `AirbyteTypeformLoader`
  * `AirbyteZendeskSupportLoader`

## Documentation and getting started
I added the basic shape of the config to the notebooks. This increases
the maintenance effort a bit, but I think it's worth it to make sure
people can get started quickly with these important connectors. This is
also why I linked the spec and the documentation page in the readme as
these two contain all the information to configure a source correctly
(e.g. it won't suggest using oauth if that's avoidable even if the
connector supports it).

## Document generation
The "documents" produced by these loaders won't have a text part
(instead, all the record fields are put into the metadata). If a text is
required by the use case, the caller needs to do custom transformation
suitable for their use case.

## Incremental sync
All loaders support incremental syncs if the underlying streams support
it. By storing the `last_state` from the reader instance away and
passing it in when loading, it will only load updated records.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-08 14:49:25 -07:00
Harrison Chase
7543a3d70e
Harrison/image (#845)
Co-authored-by: Ashutosh Sanzgiri <sanzgiri@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-08 13:58:27 -07:00
Leonid Ganeline
33a2f58fbf
tensoflow_datasets document loader (#8721)
This PR adds `tensoflow_datasets` document loader
2023-08-08 15:19:28 -04:00
Leonid Ganeline
2d078c7767
PubMed document loader (#8893)
- added `PubMed Document Loader` artifacts; ut-s; examples 
- fixed `PubMed utility`; ut-s

@hwchase17
2023-08-08 14:26:03 -04:00
Seif
6327eecdaf
Fix typo in Vectara docs (#8925)
Fixed a typo in the Vectara docs description.
2023-08-08 10:11:07 -07:00
David vonThenen
bf4a112aa6
Fixes to the Nebula LLM Integration (#8918)
This addresses some issues with introducing the Nebula LLM to LangChain
in this PR:
https://github.com/langchain-ai/langchain/pull/8876

This fixes the following:
- Removes `SYMBLAI` from variable names
- Fixes bug with `Bearer` for the API KEY


Thanks again in advance for your help!
cc: @hwchase17, @baskaryan

---------

Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
2023-08-08 10:04:43 -07:00
Josh Hart
6116cbf0de
Fix imports in awslambda docs (#8916)
Minor doc fix to awslambda tool notebook. 

Add missing import for initialize_agent to awslambda agent example

Co-authored-by: Josh Hart <josharj@amazon.com>
2023-08-08 08:29:28 -07:00
Maurits de Groot
61c2d918c6
Fixed inaccurate import in integrations:providers:bedrock documentation (#8915)
Description:
Fixed inaccurate import in integrations:providers:bedrock documentation

In the current version of the bedrock documentation, page
https://python.langchain.com/docs/integrations/providers/bedrock it
states that the import is from langchain import Bedrock

This has been changed to from langchain.llms.bedrock import Bedrock as
stated in https://python.langchain.com/docs/integrations/llms/bedrock

Issue:
Not applicable

Dependencies
No dependencies required

Tag maintainer
@baskaryan

Twitter handle:
Not applicable
2023-08-08 07:24:36 -07:00
Manuel Soria
e74a605379
SQL use case docs (#8513) 2023-08-08 03:30:18 -07:00