- **Description:** Adding Baichuan Text Embedding Model and Baichuan Inc
introduction.
Baichuan Text Embedding ranks #1 in C-MTEB leaderboard:
https://huggingface.co/spaces/mteb/leaderboard
Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Adding Oracle Cloud Infrastructure Generative AI
integration. Oracle Cloud Infrastructure (OCI) Generative AI is a fully
managed service that provides a set of state-of-the-art, customizable
large language models (LLMs) that cover a wide range of use cases, and
which is available through a single API. Using the OCI Generative AI
service you can access ready-to-use pretrained models, or create and
host your own fine-tuned custom models based on your own data on
dedicated AI clusters.
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
- **Issue:** None,
- **Dependencies:** OCI Python SDK,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
Passed
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
we provide unit tests. However, we cannot provide integration tests due
to Oracle policies that prohibit public sharing of api keys.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** add support for kwargs in`MlflowEmbeddings`
`embed_document()` and `embed_query()` so that all the arguments
required by Cohere API (and others?) can be passed down to the server.
- **Issue:** #15234
- **Dependencies:** MLflow with MLflow Deployments (`pip install
mlflow[genai]`)
**Tests**
Now this code [adapted from the
docs](https://python.langchain.com/docs/integrations/providers/mlflow#embeddings-example)
for the Cohere API works locally.
```python
"""
Setup
-----
export COHERE_API_KEY=...
mlflow deployments start-server --config-path examples/deployments/cohere/config.yaml
Run
---
python /path/to/this/file.py
"""
embeddings = MlflowCohereEmbeddings(target_uri="http://127.0.0.1:5000", endpoint="embeddings")
print(embeddings.embed_query("hello")[:3])
print(embeddings.embed_documents(["hello", "world"])[0][:3])
```
Output
```
[0.060455322, 0.028793335, -0.025848389]
[0.031707764, 0.021057129, -0.009361267]
```
Description: Volcano Ark is an enterprise-grade large-model service
platform for developers, providing a full range of functions and
services such as model training, inference, evaluation, fine-tuning. You
can visit its homepage at https://www.volcengine.com/docs/82379/1099455
for details. This change could help developers use the platform for
embedding.
Issue: None
Dependencies: volcengine
Tag maintainer: @baskaryan
Twitter handle: @hinnnnnnnnnnnns
---------
Co-authored-by: lujingxuansc <lujingxuansc@bytedance.com>