Commit Graph

10 Commits

Author SHA1 Message Date
William FH
b7c0eb9ecb
Wfh/ref links (#8454) 2023-07-29 08:44:32 -07:00
HeTaoPKU
d5884017a9
Add Minimax llm model to langchain (#7645)
- Description: Minimax is a great AI startup from China, recently they
released their latest model and chat API, and the API is widely-spread
in China. As a result, I'd like to add the Minimax llm model to
Langchain.
- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: the <tao.he@hulu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:53:23 -07:00
Jiayi Ni
1efb9bae5f
FEAT: Integrate Xinference LLMs and Embeddings (#8171)
- [Xorbits
Inference(Xinference)](https://github.com/xorbitsai/inference) is a
powerful and versatile library designed to serve language, speech
recognition, and multimodal models. Xinference supports a variety of
GGML-compatible models including chatglm, whisper, and vicuna, and
utilizes heterogeneous hardware and a distributed architecture for
seamless cross-device and cross-server model deployment.
- This PR integrates Xinference models and Xinference embeddings into
LangChain.
- Dependencies: To install the depenedencies for this integration, run
    
    `pip install "xinference[all]"`
    
- Example Usage:

To start a local instance of Xinference, run `xinference`.

To deploy Xinference in a distributed cluster, first start an Xinference
supervisor using `xinference-supervisor`:

`xinference-supervisor -H "${supervisor_host}"`

Then, start the Xinference workers using `xinference-worker` on each
server you want to run them on.

`xinference-worker -e "http://${supervisor_host}:9997"`

To use Xinference with LangChain, you also need to launch a model. You
can use command line interface (CLI) to do so. Fo example: `xinference
launch -n vicuna-v1.3 -f ggmlv3 -q q4_0`. This launches a model named
vicuna-v1.3 with `model_format="ggmlv3"` and `quantization="q4_0"`. A
model UID is returned for you to use.

Now you can use Xinference with LangChain:

```python
from langchain.llms import Xinference

llm = Xinference(
    server_url="http://0.0.0.0:9997", # suppose the supervisor_host is "0.0.0.0"
    model_uid = {model_uid} # model UID returned from launching a model
)

llm(
    prompt="Q: where can we visit in the capital of France? A:",
    generate_config={"max_tokens": 1024},
)
```

You can also use RESTful client to launch a model:
```python
from xinference.client import RESTfulClient

client = RESTfulClient("http://0.0.0.0:9997")

model_uid = client.launch_model(model_name="vicuna-v1.3", model_size_in_billions=7, quantization="q4_0")
```

The following code block demonstrates how to use Xinference embeddings
with LangChain:
```python
from langchain.embeddings import XinferenceEmbeddings

xinference = XinferenceEmbeddings(
    server_url="http://0.0.0.0:9997",
    model_uid = model_uid
)
```

```python
query_result = xinference.embed_query("This is a test query")
```

```python
doc_result = xinference.embed_documents(["text A", "text B"])
```

Xinference is still under rapid development. Feel free to [join our
Slack
community](https://xorbitsio.slack.com/join/shared_invite/zt-1z3zsm9ep-87yI9YZ_B79HLB2ccTq4WA)
to get the latest updates!

- Request for review: @hwchase17, @baskaryan
- Twitter handle: https://twitter.com/Xorbitsio

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 21:23:19 -07:00
Bagatur
68763bd25f
mv popular and additional chains to use cases (#8242) 2023-07-27 12:55:13 -07:00
Aarav Borthakur
8ce661d5a1
Docs: Fix Rockset links (#8214)
Fix broken Rockset links.

Right now links at
https://python.langchain.com/docs/integrations/providers/rockset are
broken.
2023-07-26 10:38:37 -07:00
Emory Petermann
7734a2b5ab
update golden-query notebook and fix typo in golden docs (#8253)
updating the documentation to be consistent for Golden query tool and
have a better introduction to the tool
2023-07-25 18:15:48 -07:00
William FH
0a16b3d84b
Update Integrations links (#8206) 2023-07-24 21:20:32 -07:00
Anthony Mahanna
76102971c0
ArangoDB/AQL support for Graph QA Chain (#7880)
**Description**: Serves as an introduction to LangChain's support for
[ArangoDB](https://github.com/arangodb/arangodb), similar to
https://github.com/hwchase17/langchain/pull/7165 and
https://github.com/hwchase17/langchain/pull/4881

**Issue**: No issue has been created for this feature

**Dependencies**: `python-arango` has been added as an optional
dependency via the `CONTRIBUTING.md` guidelines
 
**Twitter handle**: [at]arangodb

- Integration test has been added
- Notebook has been added:
[graph_arangodb_qa.ipynb](https://github.com/amahanna/langchain/blob/master/docs/extras/modules/chains/additional/graph_arangodb_qa.ipynb)

[![Open In
Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/amahanna/langchain/blob/master/docs/extras/modules/chains/additional/graph_arangodb_qa.ipynb)

```
docker run -p 8529:8529 -e ARANGO_ROOT_PASSWORD= arangodb/arangodb
```

```
pip install git+https://github.com/amahanna/langchain.git
```

```python
from arango import ArangoClient

from langchain.chat_models import ChatOpenAI
from langchain.graphs import ArangoGraph
from langchain.chains import ArangoGraphQAChain

db = ArangoClient(hosts="localhost:8529").db(name="_system", username="root", password="", verify=True)

graph = ArangoGraph(db)

chain = ArangoGraphQAChain.from_llm(ChatOpenAI(temperature=0), graph=graph)

chain.run("Is Ned Stark alive?")
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 15:16:52 -07:00
Bagatur
1a7d8667c8
Bagatur/gateway chat (#8198)
Signed-off-by: dbczumar <corey.zumar@databricks.com>
Co-authored-by: dbczumar <corey.zumar@databricks.com>
2023-07-24 12:17:00 -07:00
Bagatur
c8c8635dc9
mv module integrations docs (#8101) 2023-07-23 23:23:16 -07:00