- **Description:** Adds Wikidata support to langchain. Can read out
documents from Wikidata.
- **Issue:** N/A
- **Dependencies:** Adds implicit dependencies for
`wikibase-rest-api-client` (for turning items into docs) and
`mediawikiapi` (for hitting the search endpoint)
- **Twitter handle:** @derenrich
You can see an example of this tool used in a chain
[here](https://nbviewer.org/urls/d.erenrich.net/upload/Wikidata_Langchain.ipynb)
or
[here](https://nbviewer.org/urls/d.erenrich.net/upload/Wikidata_Lars_Kai_Hansen.ipynb)
<!-- Thank you for contributing to LangChain!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
URL : https://python.langchain.com/docs/use_cases/extraction
Desc:
<b> While the following statement executes successfully, it throws an
error which is described below when we use the imported packages</b>
```py
from pydantic import BaseModel, Field, validator
```
Code:
```python
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import (
PromptTemplate,
)
from langchain_openai import OpenAI
from pydantic import BaseModel, Field, validator
# Define your desired data structure.
class Joke(BaseModel):
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
# You can add custom validation logic easily with Pydantic.
@validator("setup")
def question_ends_with_question_mark(cls, field):
if field[-1] != "?":
raise ValueError("Badly formed question!")
return field
```
Error:
```md
PydanticUserError: The `field` and `config` parameters are not available
in Pydantic V2, please use the `info` parameter instead.
For further information visit
https://errors.pydantic.dev/2.5/u/validator-field-config-info
```
Solution:
Instead of doing:
```py
from pydantic import BaseModel, Field, validator
```
We should do:
```py
from langchain_core.pydantic_v1 import BaseModel, Field, validator
```
Thanks.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** This update ensures that the user-defined embedding
function specified during vector store creation is applied during
queries. Previously, even if a custom embedding function was defined at
the time of store creation, Bagel DB would default to using the standard
embedding function during query execution. This pull request addresses
this issue by consistently using the user-defined embedding function for
queries if one has been specified earlier.
- **Description:** This change allows the `_fetch` method in the
`WebBaseLoader` class to utilize cookies from an existing
`requests.Session`. It ensures that when the `fetch` method is used, any
cookies in the provided session are included in the request. This
enhancement maintains compatibility with existing functionality while
extending the utility of the `fetch` method for scenarios where cookie
persistence is necessary.
- **Issue:** Not applicable (new feature),
- **Dependencies:** Requires `aiohttp` and `requests` libraries (no new
dependencies introduced),
- **Twitter handle:** N/A
Co-authored-by: Joao Almeida <joao.almeida@mercedes-benz.io>
We can't use `json.dumps` by default as many types returned by the
cassandra driver are not serializable. It's safer to use `str` and let
users define their own custom `page_content_mapper` if needed.
if eg. the stream iterator is interrupted then adding more events to the
send_stream will raise an exception that we should catch (and handle
where appropriate)
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
- **Description**: YoutubeLoader right now returns one document that
contains the entire transcript. I think it would be useful to add an
option to return multiple documents, where each document would contain
one line of transcript with the start time and duration in the metadata.
For example,
[AssemblyAIAudioTranscriptLoader](https://github.com/langchain-ai/langchain/blob/master/libs/community/langchain_community/document_loaders/assemblyai.py)
is implemented in a similar way, it allows you to choose between the
format to use for the document loader.
- **Description:** Adding Baichuan Text Embedding Model and Baichuan Inc
introduction.
Baichuan Text Embedding ranks #1 in C-MTEB leaderboard:
https://huggingface.co/spaces/mteb/leaderboard
Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
- **Description:** This PR adds [EdenAI](https://edenai.co/) for the
chat model (already available in LLM & Embeddings). It supports all
[ChatModel] functionality: generate, async generate, stream, astream and
batch. A detailed notebook was added.
- **Dependencies**: No dependencies are added as we call a rest API.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
… converters
One way to convert anything to an OAI function:
convert_to_openai_function
One way to convert anything to an OAI tool: convert_to_openai_tool
Corresponding bind functions on OAI models: bind_functions, bind_tools
community:
- **Description:**
- Add new ChatLiteLLMRouter class that allows a client to use a LiteLLM
Router as a LangChain chat model.
- Note: The existing ChatLiteLLM integration did not cover the LiteLLM
Router class.
- Add tests and Jupyter notebook.
- **Issue:** None
- **Dependencies:** Relies on existing ChatLiteLLM integration
- **Twitter handle:** @bburgin_0
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>