**Description**
Fix AzureSearch delete documents method by using FIELDS_ID variable
instead of the hard coded "id" value
**Issue:**
This is linked to this issue:
https://github.com/langchain-ai/langchain/issues/22314
Co-authored-by: dseban <dan.seban@neoxia.com>
- This fixes all the tracing issues with people still using
get_relevant_docs, and a change we need for 0.3 anyway
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- **Description:** The `ApifyWrapper` class expects `apify_api_token` to
be passed as a named parameter or set as an environment variable. But
the corresponding field was missing in the class definition causing the
argument to be ignored when passed as a named param. This patch fixes
that.
- This is a pattern that shows up occasionally in langgraph questions,
people chain a graph to something else after, and want to pass the graph
some kwargs (eg. stream_mode)
LangSmith and LangChain context var handling evolved in parallel since
originally we didn't expect people to want to interweave the decorator
and langchain code.
Once we get a new langsmith release, this PR will let you seemlessly
hand off between @traceable context and runnable config context so you
can arbitrarily nest code.
It's expected that this fails right now until we get another release of
the SDK
### Issue: #22299
### descriptions
The documentation appears to be wrong. When the user actually sets this
parameter "asynchronous" to be True, it fails because the __init__
function of FAISS class doesn't allow this parameter. In fact, most of
the class/instance functions of this class have both the sync/async
version, so it looks like what we need is just to remove this parameter
from the doc.
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Co-authored-by: Lifu Wu <lifu@nextbillion.ai>
- **Description:** This PR contains a bugfix which result in malfunction
of multi-turn conversation in QianfanChatEndpoint and adaption for
ToolCall and ToolMessage
ChatOpenAI supports a kwarg `stream_options` which can take values
`{"include_usage": True}` and `{"include_usage": False}`.
Setting include_usage to True adds a message chunk to the end of the
stream with usage_metadata populated. In this case the final chunk no
longer includes `"finish_reason"` in the `response_metadata`. This is
the current default and is not yet released. Because this could be
disruptive to workflows, here we remove this default. The default will
now be consistent with OpenAI's API (see parameter
[here](https://platform.openai.com/docs/api-reference/chat/create#chat-create-stream_options)).
Examples:
```python
from langchain_openai import ChatOpenAI
llm = ChatOpenAI()
for chunk in llm.stream("hi"):
print(chunk)
```
```
content='' id='run-8cff4721-2acd-4551-9bf7-1911dae46b92'
content='Hello' id='run-8cff4721-2acd-4551-9bf7-1911dae46b92'
content='!' id='run-8cff4721-2acd-4551-9bf7-1911dae46b92'
content='' response_metadata={'finish_reason': 'stop'} id='run-8cff4721-2acd-4551-9bf7-1911dae46b92'
```
```python
for chunk in llm.stream("hi", stream_options={"include_usage": True}):
print(chunk)
```
```
content='' id='run-39ab349b-f954-464d-af6e-72a0927daa27'
content='Hello' id='run-39ab349b-f954-464d-af6e-72a0927daa27'
content='!' id='run-39ab349b-f954-464d-af6e-72a0927daa27'
content='' response_metadata={'finish_reason': 'stop'} id='run-39ab349b-f954-464d-af6e-72a0927daa27'
content='' id='run-39ab349b-f954-464d-af6e-72a0927daa27' usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17}
```
```python
llm = ChatOpenAI().bind(stream_options={"include_usage": True})
for chunk in llm.stream("hi"):
print(chunk)
```
```
content='' id='run-59918845-04b2-41a6-8d90-f75fb4506e0d'
content='Hello' id='run-59918845-04b2-41a6-8d90-f75fb4506e0d'
content='!' id='run-59918845-04b2-41a6-8d90-f75fb4506e0d'
content='' response_metadata={'finish_reason': 'stop'} id='run-59918845-04b2-41a6-8d90-f75fb4506e0d'
content='' id='run-59918845-04b2-41a6-8d90-f75fb4506e0d' usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17}
```
Add kwargs in add_documents function
**langchain**: Add **kwargs in parent_document_retriever"
- **Add kwargs for `add_document` in `parent_document_retriever.py`**
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:** Update langchainhub integration test dependency and add
an integration test for pulling private prompt
**Dependencies:** langchainhub 0.1.16
Change 'FIREWALL' to 'FIRECRAWL' as I believe this may have been in
error. Other docs refer to 'FIRECRAWL_API_KEY'.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Description
## Problem
`Runnable.get_graph` fails when `InputType` or `OutputType` property
raises `TypeError`.
-
003c98e5b4/libs/core/langchain_core/runnables/base.py (L250-L274)
-
003c98e5b4/libs/core/langchain_core/runnables/base.py (L394-L396)
This problem prevents getting a graph of `Runnable` objects whose
`InputType` or `OutputType` property raises `TypeError` but whose
`invoke` works well, such as `langchain.output_parsers.RegexParser`,
which I have already pointed out in #19792 that a `TypeError` would
occur.
## Solution
- Add `try-except` syntax to handle `TypeError` to the codes which get
`input_node` and `output_node`.
# Issue
- #19801
# Twitter Handle
- [hmdev3](https://twitter.com/hmdev3)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: community: Add Zep Cloud components + docs +
examples
- [x] **PR message**:
We have recently released our new zep-cloud sdks that are compatible
with Zep Cloud (not Zep Open Source). We have also maintained our Cloud
version of langchain components (ChatMessageHistory, VectorStore) as
part of our sdks. This PRs goal is to port these components to langchain
community repo, and close the gap with the existing Zep Open Source
components already present in community repo (added
ZepCloudMemory,ZepCloudVectorStore,ZepCloudRetriever).
Also added a ZepCloudChatMessageHistory components together with an
expression language example ported from our repo. We have left the
original open source components intact on purpose as to not introduce
any breaking changes.
- **Issue:** -
- **Dependencies:** Added optional dependency of our new cloud sdk
`zep-cloud`
- **Twitter handle:** @paulpaliychuk51
- [x] **Add tests and docs**
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
3 fixes of DuckDB vector store:
- unify defaults in constructor and from_texts (users no longer have to
specify `vector_key`).
- include search similarity into output metadata (fixes#20969)
- significantly improve performance of `from_documents`
Dependencies: added Pandas to speed up `from_documents`.
I was thinking about CSV and JSON options, but I expect trouble loading
JSON values this way and also CSV and JSON options require storing data
to disk.
Anyway, the poetry file for langchain-community already contains a
dependency on Pandas.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
- **Description:** this PR gives clickhouse client the ability to use a
secure connection to the clickhosue server
- **Issue:** fixes#22082
- **Dependencies:** -
- **Twitter handle:** `_codingcoffee_`
Signed-off-by: Ameya Shenoy <shenoy.ameya@gmail.com>
Co-authored-by: Shresth Rana <shresth@grapevine.in>
OpenAI recently added a `stream_options` parameter to its chat
completions API (see [release
notes](https://platform.openai.com/docs/changelog/added-chat-completions-stream-usage)).
When this parameter is set to `{"usage": True}`, an extra "empty"
message is added to the end of a stream containing token usage. Here we
propagate token usage to `AIMessage.usage_metadata`.
We enable this feature by default. Streams would now include an extra
chunk at the end, **after** the chunk with
`response_metadata={'finish_reason': 'stop'}`.
New behavior:
```
[AIMessageChunk(content='', id='run-4b20dbe0-3817-4f62-b89d-03ef76f25bde'),
AIMessageChunk(content='Hello', id='run-4b20dbe0-3817-4f62-b89d-03ef76f25bde'),
AIMessageChunk(content='!', id='run-4b20dbe0-3817-4f62-b89d-03ef76f25bde'),
AIMessageChunk(content='', response_metadata={'finish_reason': 'stop'}, id='run-4b20dbe0-3817-4f62-b89d-03ef76f25bde'),
AIMessageChunk(content='', id='run-4b20dbe0-3817-4f62-b89d-03ef76f25bde', usage_metadata={'input_tokens': 8, 'output_tokens': 9, 'total_tokens': 17})]
```
Old behavior (accessible by passing `stream_options={"include_usage":
False}` into (a)stream:
```
[AIMessageChunk(content='', id='run-1312b971-c5ea-4d92-9015-e6604535f339'),
AIMessageChunk(content='Hello', id='run-1312b971-c5ea-4d92-9015-e6604535f339'),
AIMessageChunk(content='!', id='run-1312b971-c5ea-4d92-9015-e6604535f339'),
AIMessageChunk(content='', response_metadata={'finish_reason': 'stop'}, id='run-1312b971-c5ea-4d92-9015-e6604535f339')]
```
From what I can tell this is not yet implemented in Azure, so we enable
only for ChatOpenAI.
Hey, I'm Sasha. The SDK engineer from [Comet](https://comet.com).
This PR updates the CometTracer class.
Added metadata to CometTracerr. From now on, both chains and spans will
send it.
* Lint for usage of standard xml library
* Add forced opt-in for quip client
* Actual security issue is with underlying QuipClient not LangChain
integration (since the client is doing the parsing), but adding
enforcement at the LangChain level.
If tool_use blocks and tool_calls with overlapping IDs are present,
prefer the values of the tool_calls. Allows for mutating AIMessages just
via tool_calls.
```python
class UsageMetadata(TypedDict):
"""Usage metadata for a message, such as token counts.
Attributes:
input_tokens: (int) count of input (or prompt) tokens
output_tokens: (int) count of output (or completion) tokens
total_tokens: (int) total token count
"""
input_tokens: int
output_tokens: int
total_tokens: int
```
```python
class AIMessage(BaseMessage):
...
usage_metadata: Optional[UsageMetadata] = None
"""If provided, token usage information associated with the message."""
...
```
- **Description:** When I was running the sparkllm, I found that the
default parameters currently used could no longer run correctly.
- original parameters & values:
- spark_api_url: "wss://spark-api.xf-yun.com/v3.1/chat"
- spark_llm_domain: "generalv3"
```python
# example
from langchain_community.chat_models import ChatSparkLLM
spark = ChatSparkLLM(spark_app_id="my_app_id",
spark_api_key="my_api_key", spark_api_secret="my_api_secret")
spark.invoke("hello")
```
![sparkllm](https://github.com/langchain-ai/langchain/assets/55082429/5369bfdf-4305-496a-bcf5-2d3f59d39414)
So I updated them to 3.5 (same as sparkllm official website). After the
update, they can be used normally.
- new parameters & values:
- spark_api_url: "wss://spark-api.xf-yun.com/v3.5/chat"
- spark_llm_domain: "generalv3.5"
This pull request addresses and fixes exception handling in the
UpstageLayoutAnalysisParser and enhances the test coverage by adding
error exception tests for the document loader. These improvements ensure
robust error handling and increase the reliability of the system when
dealing with external API calls and JSON responses.
### Changes Made
1. Fix Request Exception Handling:
- Issue: The existing implementation of UpstageLayoutAnalysisParser did
not properly handle exceptions thrown by the requests library, which
could lead to unhandled exceptions and potential crashes.
- Solution: Added comprehensive exception handling for
requests.RequestException to catch any request-related errors. This
includes logging the error details and raising a ValueError with a
meaningful error message.
2. Add Error Exception Tests for Document Loader:
- New Tests: Introduced new test cases to verify the robustness of the
UpstageLayoutAnalysisLoader against various error scenarios. The tests
ensure that the loader gracefully handles:
- RequestException: Simulates network issues or invalid API requests to
ensure appropriate error handling and user feedback.
- JSONDecodeError: Simulates scenarios where the API response is not a
valid JSON, ensuring the system does not crash and provides clear error
messaging.
**Description:**
- Added propagation of document metadata from O365BaseLoader to
FileSystemBlobLoader (O365BaseLoader uses FileSystemBlobLoader under the
hood).
- This is done by passing dictionary `metadata_dict`: key=filename and
value=dictionary containing document's metadata
- Modified `FileSystemBlobLoader` to accept the `metadata_dict`, use
`mimetype` from it (if available) and pass metadata further into blob
loader.
**Issue:**
- `O365BaseLoader` under the hood downloads documents to temp folder and
then uses `FileSystemBlobLoader` on it.
- However metadata about the document in question is lost in this
process. In particular:
- `mime_type`: `FileSystemBlobLoader` guesses `mime_type` from the file
extension, but that does not work 100% of the time.
- `web_url`: this is useful to keep around since in RAG LLM we might
want to provide link to the source document. In order to work well with
document parsers, we pass the `web_url` as `source` (`web_url` is
ignored by parsers, `source` is preserved)
**Dependencies:**
None
**Twitter handle:**
@martintriska1
Please review @baskaryan
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "Add CloudBlobLoader"
- community: Add CloudBlobLoader
- [ ] **PR message**: Add cloud blob loader
- **Description:**
Langchain provides several approaches to read different file formats:
Specific loaders (`CVSLoader`) or blob-compatible loaders
(`FileSystemBlobLoader`). The only implementation proposed for
BlobLoader is `FileSystemBlobLoader`.
Many projects retrieve files from cloud storage. We propose a new
implementation of `BlobLoader` to read files from the three cloud
storage systems. The interface is strictly identical to
`FileSystemBlobLoader`. The only difference is the constructor, which
takes a cloud "url" object such as `s3://my-bucket`, `az://my-bucket`,
or `gs://my-bucket`.
By streamlining the process, this novel implementation eliminates the
requirement to pre-download files from cloud storage to local temporary
files (which are seldom removed).
The code relies on the
[CloudPathLib](https://cloudpathlib.drivendata.org/stable/) library to
interpret cloud URLs. This has been added as an optional dependency.
```Python
loader = CloudBlobLoader("s3://mybucket/id")
for blob in loader.yield_blobs():
print(blob)
```
- [X] **Dependencies:** CloudPathLib
- [X] **Twitter handle:** pprados
- [X] **Add tests and docs**: Add unit test, but it's easy to convert to
integration test, with some files in a cloud storage (see
`test_cloud_blob_loader.py`)
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified.
Hello from Paris @hwchase17. Can you review this PR?
---------
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
This PR contains 4 added functions:
- max_marginal_relevance_search_by_vector
- amax_marginal_relevance_search_by_vector
- max_marginal_relevance_search
- amax_marginal_relevance_search
I'm no langchain expert, but tried do inspect other vectorstore sources
like chroma, to build these functions for SurrealDB. If someone has some
changes for me, please let me know. Otherwise I would be happy, if these
changes are added to the repository, so that I can use the orignal repo
and not my local monkey patched version.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:https://github.com/arpitkumar980/langchain.git
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- **Description:** Fixed `AzureSearchVectorStoreRetriever` to account
for search_kwargs. More explanation is in the mentioned issue.
- **Issue:** #21492
---------
Co-authored-by: MAC <mac@MACs-MacBook-Pro.local>
Co-authored-by: Massimiliano Pronesti <massimiliano.pronesti@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [X] **PR title**: "docs: Chroma docstrings update"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [X] **PR message**:
- **Description:** Added and updated Chroma docstrings
- **Issue:** https://github.com/langchain-ai/langchain/issues/21983
- [X] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- only docs
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
Description: This change adds args_schema (pydantic BaseModel) to
WikipediaQueryRun for correct schema formatting on LLM function calls
Issue: currently using WikipediaQueryRun with OpenAI function calling
returns the following error "TypeError: WikipediaQueryRun._run() got an
unexpected keyword argument '__arg1' ". This happens because the schema
sent to the LLM is "input: '{"__arg1":"Hunter x Hunter"}'" while the
method should be called with the "query" parameter.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added [Scrapfly](https://scrapfly.io/) Web Loader integration. Scrapfly
is a web scraping API that allows extracting web page data into
accessible markdown or text datasets.
- __Description__: Added Scrapfly web loader for retrieving web page
data as markdown or text.
- Dependencies: scrapfly-sdk
- Twitter: @thealchemi1st
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Updates Meilisearch vectorstore for compatibility
with v1.8. Adds [”showRankingScore”:
true”](https://www.meilisearch.com/docs/reference/api/search#ranking-score)
in the search parameters and replaces `_semanticScore` field with `
_rankingScore`
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:**
- Extend AzureSearch with `maximal_marginal_relevance` (for vector and
hybrid search)
- Add construction `from_embeddings` - if the user has already embedded
the texts
- Add `add_embeddings`
- Refactor common parts (`_simple_search`, `_results_to_documents`,
`_reorder_results_with_maximal_marginal_relevance`)
- Add `vector_search_dimensions` as a parameter to the constructor to
avoid extra calls to `embed_query` (most of the time the user applies
the same model and knows the dimension)
**Issue:** none
**Dependencies:** none
- [x] **Add tests and docs**: The docstrings have been added to the new
functions, and unified for the existing ones. The example notebook is
great in illustrating the main usage of AzureSearch, adding the new
methods would only dilute the main content.
- [x] **Lint and test**
---------
Co-authored-by: Oleksii Pokotylo <oleksii.pokotylo@pwc.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Backwards compatible extension of the initialisation
interface of HanaDB to allow the user to specify
specific_metadata_columns that are used for metadata storage of selected
keys which yields increased filter performance. Any not-mentioned
metadata remains in the general metadata column as part of a JSON
string. Furthermore switched to executemany for batch inserts into
HanaDB.
**Issue:** N/A
**Dependencies:** no new dependencies added
**Twitter handle:** @sapopensource
---------
Co-authored-by: Martin Kolb <martin.kolb@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Added extra functionality to `CharacterTextSplitter`,
`TextSplitter` classes.
The user can select whether to append the separator to the previous
chunk with `keep_separator='end' ` or else prepend to the next chunk.
Previous functionality prepended by default to next chunk.
**Issue:** Fixes#20908
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Integrate RankLLM reranker (https://github.com/castorini/rank_llm) into
LangChain
An example notebook is given in
`docs/docs/integrations/retrievers/rankllm-reranker.ipynb`
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Bug code**: In
langchain_community/document_loaders/csv_loader.py:100
- **Description**: currently, when 'CSVLoader' reads the column as None
in the 'csv' file, it will report an error because the 'CSVLoader' does
not verify whether the column is of str type and does not consider how
to handle the corresponding 'row_data' when the column is' None 'in the
csv. This pr provides a solution.
- **Issue:** Fix#20699
- **thinking:**
1. Refer to the processing method for
'langchain_community/document_loaders/csv_loader.py:100' when **'v'**
equals'None', and apply the same method to '**k**'.
(Reference`csv.DictReader` ,**'k'** will only be None when `
len(columns) < len(number_row_data)` is established)
2. **‘k’** equals None only holds when it is the last column, and its
corresponding **'v'** type is a list. Therefore, I referred to the data
format in 'Document' and used ',' to concatenated the elements in the
list.(But I'm not sure if you accept this form, if you have any other
ideas, communicate)
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Added revision_example prompt template to include the
revision request and revision examples in the revision chain.
**Issue:** Not Applicable
**Dependencies:** Not Applicable
**Twitter handle:** @nithinjp09
## Description
The existing public interface for `langchain_community.emeddings` is
broken. In this file, `__all__` is statically defined, but is
subsequently overwritten with a dynamic expression, which type checkers
like pyright do not support. pyright actually gives the following
diagnostic on the line I am requesting we remove:
[reportUnsupportedDunderAll](https://github.com/microsoft/pyright/blob/main/docs/configuration.md#reportUnsupportedDunderAll):
```
Operation on "__all__" is not supported, so exported symbol list may be incorrect
```
Currently, I get the following errors when attempting to use publicablly
exported classes in `langchain_community.emeddings`:
```python
import langchain_community.embeddings
langchain_community.embeddings.HuggingFaceEmbeddings(...) # error: "HuggingFaceEmbeddings" is not exported from module "langchain_community.embeddings" (reportPrivateImportUsage)
```
This is solved easily by removing the dynamic expression.
Thank you for contributing to LangChain!
- [X] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
**Description:**
Fix ChatDatabricsk in case that streaming response doesn't have role
field in delta chunk
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
## 'raise_for_status' parameter of WebBaseLoader works in sync load but
not in async load.
In webBaseLoader:
Sync load is calling `_scrape` and has `raise_for_status` properly
handled.
```
def _scrape(
self,
url: str,
parser: Union[str, None] = None,
bs_kwargs: Optional[dict] = None,
) -> Any:
from bs4 import BeautifulSoup
if parser is None:
if url.endswith(".xml"):
parser = "xml"
else:
parser = self.default_parser
self._check_parser(parser)
html_doc = self.session.get(url, **self.requests_kwargs)
if self.raise_for_status:
html_doc.raise_for_status()
if self.encoding is not None:
html_doc.encoding = self.encoding
elif self.autoset_encoding:
html_doc.encoding = html_doc.apparent_encoding
return BeautifulSoup(html_doc.text, parser, **(bs_kwargs or {}))
```
Async load is calling `_fetch` but missing `raise_for_status` logic.
```
async def _fetch(
self, url: str, retries: int = 3, cooldown: int = 2, backoff: float = 1.5
) -> str:
async with aiohttp.ClientSession() as session:
for i in range(retries):
try:
async with session.get(
url,
headers=self.session.headers,
ssl=None if self.session.verify else False,
cookies=self.session.cookies.get_dict(),
) as response:
return await response.text()
```
Co-authored-by: kefan.you <darkfss@sina.com>
**Title**: "langchain: OpenAI Assistants v2 api support"
***Descriptions***
- [x] "attachments" support added along with backward compatibility of
"file_ids"
- [x] "tool_resources" support added while creating new assistant
- [ ] "tool_choice" parameter support
- [ ] Streaming support
- **Dependencies:** OpenAI v2 API (openai>=1.23.0)
- **Twitter handle:** @skanta_rath
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- Updated docs to have an example to use Jamba instead of J2
---------
Co-authored-by: Asaf Gardin <asafg@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Tongyi uses different client for chat model and
vision model. This PR chooses proper client based on model name to
support both chat model and vision model. Reference [tongyi
document](https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-qianwen-vl-plus-api?spm=a2c4g.11186623.0.0.27404c9a7upm11)
for details.
```
from langchain_core.messages import HumanMessage
from langchain_community.chat_models import ChatTongyi
llm = ChatTongyi(model_name='qwen-vl-max')
image_message = {
"image": "https://lilianweng.github.io/posts/2023-06-23-agent/agent-overview.png"
}
text_message = {
"text": "summarize this picture",
}
message = HumanMessage(content=[text_message, image_message])
llm.invoke([message])
```
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** None
- if tap_output_iter/aiter is called multiple times for the same run
issue events only once
- if chat model run is tapped don't issue duplicate on_llm_new_token
events
- if first chunk arrives after run has ended do not emit it as a stream
event
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- `llm_chain` becomes `Union[LLMChain, Runnable]`
- `.from_llm` creates a runnable
tested by verifying that docs/how_to/MultiQueryRetriever.ipynb runs
unchanged with sync/async invoke (and that it runs if we specifically
instantiate with LLMChain).
We add a tool and retriever for the [AskNews](https://asknews.app)
platform with example notebooks.
The retriever can be invoked with:
```py
from langchain_community.retrievers import AskNewsRetriever
retriever = AskNewsRetriever(k=3)
retriever.invoke("impact of fed policy on the tech sector")
```
To retrieve 3 documents in then news related to fed policy impacts on
the tech sector. The included notebook also includes deeper details
about controlling filters such as category and time, as well as
including the retriever in a chain.
The tool is quite interesting, as it allows the agent to decide how to
obtain the news by forming a query and deciding how far back in time to
look for the news:
```py
from langchain_community.tools.asknews import AskNewsSearch
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain_openai import ChatOpenAI
tool = AskNewsSearch()
instructions = """You are an assistant."""
base_prompt = hub.pull("langchain-ai/openai-functions-template")
prompt = base_prompt.partial(instructions=instructions)
llm = ChatOpenAI(temperature=0)
asknews_tool = AskNewsSearch()
tools = [asknews_tool]
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
)
agent_executor.invoke({"input": "How is the tech sector being affected by fed policy?"})
```
---------
Co-authored-by: Emre <e@emre.pm>
Please let me know if you see any possible areas of improvement. I would
very much appreciate your constructive criticism if time allows.
**Description:**
- Added a aerospike vector store integration that utilizes
[Aerospike-Vector-Search](https://aerospike.com/products/vector-database-search-llm/)
add-on.
- Added both unit tests and integration tests
- Added a docker compose file for spinning up a test environment
- Added a notebook
**Dependencies:** any dependencies required for this change
- aerospike-vector-search
**Twitter handle:**
- No twitter, you can use my GitHub handle or LinkedIn if you'd like
Thanks!
---------
Co-authored-by: Jesse Schumacher <jschumacher@aerospike.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Closes#20561
This PR fixes MLX LLM stream `AttributeError`.
Recently, `mlx-lm` changed the token decoding logic, which affected the
LC+MLX integration.
Additionally, I made minor fixes such as: docs example broken link and
enforcing pipeline arguments (max_tokens, temp and etc) for invoke.
- **Issue:** #20561
- **Twitter handle:** @Prince_Canuma
Related to #20085
@baskaryan
Thank you for contributing to LangChain!
community:sparkllm[patch]: standardized init args
updated `spark_api_key` so that aliased to `api_key`. Added integration
test for `sparkllm` to test that it continues to set the same underlying
attribute.
updated temperature with Pydantic Field, added to the integration test.
Ran `make format`,`make test`, `make lint`, `make spell_check`
UpTrain has a new dashboard now that makes it easier to view projects
and evaluations. Using this requires specifying both project_name and
evaluation_name when performing evaluations. I have updated the code to
support it.
# Add pricing and max context window for GPT-4o
- community: add cost per 1k tokens and max context window
- partners: add max context window
**Description:** adds static information about GPT-4o based on
https://openai.com/api/pricing/ and
https://platform.openai.com/docs/models/gpt-4o so that GPT-4o reporting
is accurate.
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "community: enable SupabaseVectorStore to support
extended table fields"
- [x] **PR message**:
- Added extension fields to the function _add_vectors so that users can
add other custom fields when insert a record into the database. eg:
![image](https://github.com/langchain-ai/langchain/assets/10885578/e1d5ca20-936e-4cab-ba69-8fdd23b8ce8f)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**:
- Reference to `Collection` object is set to `None` when deleting a
collection `delete_collection()`
- Added utility method `reset_collection()` to allow recreating the
collection
- Moved collection creation out of `__init__` into
`__ensure_collection()` to be reused by object init and
`reset_collection()`
- `_collection` is now a property to avoid breaking changes
**Issues**:
- chroma-core/chroma#2213
**Twitter**: @t_azarov
- **Description:** In the aleph alpha client the paramater `normalize`
is *not* optional. Setting this to `None` gives an error.
- **Dependencies:** None
Co-authored-by: Jens Lücke <jens.luecke@tngtech.com>
Co-authored-by: Jens <jens.luecke@hu-berlin.de>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Example error message:
line 206, in _get_python_function_required_args
if is_function_type and required[0] == "self":
~~~~~~~~^^^
IndexError: list index out of range
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
While integrating the xinference_embedding, we observed that the
downloaded dependency package is quite substantial in size. With a focus
on resource optimization and efficiency, if the project requirements are
limited to its vector processing capabilities, we recommend migrating to
the xinference_client package. This package is more streamlined,
significantly reducing the storage space requirements of the project and
maintaining a feature focus, making it particularly suitable for
scenarios that demand lightweight integration. Such an approach not only
boosts deployment efficiency but also enhances the application's
maintainability, rendering it an optimal choice for our current context.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Add `Origin/langchain` to Apify's client's user-agent
to attribute API activity to LangChain (at Apify, we aim to monitor our
integrations to evaluate whether we should invest more in the LangChain
integration regarding functionality and content)
**Issue:** None
**Dependencies:** None
**Twitter handle:** None
## Description
This PR implements local and dynamic mode in the Nomic Embed integration
using the inference_mode and device parameters. They work as documented
[here](https://docs.nomic.ai/reference/python-api/embeddings#local-inference).
<!-- If no one reviews your PR within a few days, please @-mention one
of baskaryan, efriis, eyurtsev, hwchase17. -->
---------
Co-authored-by: Erick Friis <erickfriis@gmail.com>
These packages all import `LangSmithParams` which was released in
langchain-core==0.2.0.
N.B. we will need to release `openai` and then bump `langchain-openai`
in `together` and `upstage`.
This PR fixes two mistakes in the import paths from community for the
json data aiding the cli migration to 0.2.
It is intended as a quick follow-up to
https://github.com/langchain-ai/langchain/pull/21913 .
@nicoloboschi FYI
ChatOpenaAI --> ChatOpenAI
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
Remove unnecessary print from voyageai embeddings
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Check if event stream is closed in memory loop.
Using try/except here to avoid race condition, but this may incur a
small overhead in versions prios to 3.11
- **Code:** langchain_community/embeddings/baichuan.py:82
- **Description:** When I make an error using 'baichuan embeddings', the
printed error message is wrapped (there is actually no need to wrap)
```python
# example
from langchain_community.embeddings import BaichuanTextEmbeddings
# error key
BAICHUAN_API_KEY = "sk-xxxxxxxxxxxxx"
embeddings = BaichuanTextEmbeddings(baichuan_api_key=BAICHUAN_API_KEY)
text_1 = "今天天气不错"
query_result = embeddings.embed_query(text_1)
```
![unintended
newline](https://github.com/langchain-ai/langchain/assets/55082429/e1178ce8-62bb-405d-a4af-e3b28eabc158)
This PR improves on the `CassandraCache` and `CassandraSemanticCache`
classes, mainly in the constructor signature, and also introduces
several minor improvements around these classes.
### Init signature
A (sigh) breaking change is tentatively introduced to the constructor.
To me, the advantages outweigh the possible discomfort: the new syntax
places the DB-connection objects `session` and `keyspace` later in the
param list, so that they can be given a default value. This is what
enables the pattern of _not_ specifying them, provided one has
previously initialized the Cassandra connection through the versatile
utility method `cassio.init(...)`.
In this way, a much less unwieldy instantiation can be done, such as
`CassandraCache()` and `CassandraSemanticCache(embedding=xyz)`,
everything else falling back to defaults.
A downside is that, compared to the earlier signature, this might turn
out to be breaking for those doing positional instantiation. As a way to
mitigate this problem, this PR typechecks its first argument trying to
detect the legacy usage.
(And to make this point less tricky in the future, most arguments are
left to be keyword-only).
If this is considered too harsh, I'd like guidance on how to further
smoothen this transition. **Our plan is to make the pattern of optional
session/keyspace a standard across all Cassandra classes**, so that a
repeatable strategy would be ideal. A possibility would be to keep
positional arguments for legacy reasons but issue a deprecation warning
if any of them is actually used, to later remove them with 0.2 - please
advise on this point.
### Other changes
- class docstrings: enriched, completely moved to class level, added
note on `cassio.init(...)` pattern, added tiny sample usage code.
- semantic cache: revised terminology to never mention "distance" (it is
in fact a similarity!). Kept the legacy constructor param with a
deprecation warning if used.
- `llm_caching` notebook: uniform flow with the Cassandra and Astra DB
separate cases; better and Cassandra-first description; all imports made
explicit and from community where appropriate.
- cache integration tests moved to community (incl. the imported tools),
env var bugfix for `CASSANDRA_CONTACT_POINTS`.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
## Patch Summary
community:openai[patch]: standardize init args
## Details
I made changes to the OpenAI Chat API wrapper test in the Langchain
open-source repository
- **File**: `libs/community/tests/unit_tests/chat_models/test_openai.py`
- **Changes**:
- Updated `max_retries` with Pydantic Field
- Updated the corresponding unit test
- **Related Issues**: #20085
- Updated max_retries with Pydantic Field, updated the unit test.
---------
Co-authored-by: JuHyung Son <sonju0427@gmail.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "community: updated Browserbase loader"
- [x] **PR message**:
Updates the Browserbase loader with more options and improved docs.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Do not prefix function signature
---
* Reason for this is that information is already present with tool
calling models.
* This will save on tokens for those models, and makes it more obvious
what the description is!
* The @tool can get more parameters to allow a user to re-introduce the
the signature if we want
To permit proper coercion of objects like the following:
```python
class MyAsyncCallable:
async def __call__(self, foo):
return await ...
class MyAsyncGenerator:
async def __call__(self, foo):
await ...
yield
```
This PR introduces a v2 implementation of astream events that removes
intermediate abstractions and fixes some issues with v1 implementation.
The v2 implementation significantly reduces relevant code that's
associated with the astream events implementation together with
overhead.
After this PR, the astream events implementation:
- Uses an async callback handler
- No longer relies on BaseTracer
- No longer relies on json patch
As a result of this re-write, a number of issues were discovered with
the existing implementation.
## Changes in V2 vs. V1
### on_chat_model_end `output`
The outputs associated with `on_chat_model_end` changed depending on
whether it was within a chain or not.
As a root level runnable the output was:
```python
"data": {"output": AIMessageChunk(content="hello world!", id='some id')}
```
As part of a chain the output was:
```
"data": {
"output": {
"generations": [
[
{
"generation_info": None,
"message": AIMessageChunk(
content="hello world!", id=AnyStr()
),
"text": "hello world!",
"type": "ChatGenerationChunk",
}
]
],
"llm_output": None,
}
},
```
After this PR, we will always use the simpler representation:
```python
"data": {"output": AIMessageChunk(content="hello world!", id='some id')}
```
**NOTE** Non chat models (i.e., regular LLMs) are still associated with
the more verbose format.
### Remove some `_stream` events
`on_retriever_stream` and `on_tool_stream` events were removed -- these
were not real events, but created as an artifact of implementing on top
of astream_log.
The same information is already available in the `x_on_end` events.
### Propagating Names
Names of runnables have been updated to be more consistent
```python
model = GenericFakeChatModel(messages=infinite_cycle).configurable_fields(
messages=ConfigurableField(
id="messages",
name="Messages",
description="Messages return by the LLM",
)
)
```
Before:
```python
"name": "RunnableConfigurableFields",
```
After:
```python
"name": "GenericFakeChatModel",
```
### on_retriever_end
on_retriever_end will always return `output` which is a list of
documents (rather than a dict containing a key called "documents")
### Retry events
Removed the `on_retry` callback handler. It was incorrectly showing that
the failed function being retried has invoked `on_chain_end`
https://github.com/langchain-ai/langchain/pull/21638/files#diff-e512e3f84daf23029ebcceb11460f1c82056314653673e450a5831147d8cb84dL1394
Add unit tests that show differences between sync / async versions when
streaming.
The inner on_chain_chunk event is missing if mixing sync and async
functionality. Likely due to missing tap_output_iter implementation on
the sync variant of `_transform_stream_with_config`
0.2 is not a breaking release for core (but it is for langchain and
community)
To keep the core+langchain+community packages in sync at 0.2, we will
relax deps throughout the ecosystem to tolerate `langchain-core` 0.2
## Description
This PR introduces the new `langchain-qdrant` partner package, intending
to deprecate the community package.
## Changes
- Moved the Qdrant vector store implementation `/libs/partners/qdrant`
with integration tests.
- The conditional imports of the client library are now regular with
minor implementation improvements.
- Added a deprecation warning to
`langchain_community.vectorstores.qdrant.Qdrant`.
- Replaced references/imports from `langchain_community` with either
`langchain_core` or by moving the definitions to the `langchain_qdrant`
package itself.
- Updated the Qdrant vector store documentation to reflect the changes.
## Testing
- `QDRANT_URL` and
[`QDRANT_API_KEY`](583e36bf6b)
env values need to be set to [run integration
tests](d608c93d1f)
in the [cloud](https://cloud.qdrant.tech).
- If a Qdrant instance is running at `http://localhost:6333`, the
integration tests will use it too.
- By default, tests use an
[`in-memory`](https://github.com/qdrant/qdrant-client?tab=readme-ov-file#local-mode)
instance(Not comprehensive).
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Erick Friis <erickfriis@gmail.com>
This PR makes some small updates for `KuzuQAChain` for graph QA.
- Updated Cypher generation prompt (we now support `WHERE EXISTS`) and
generalize it more
- Support different LLMs for Cypher generation and QA
- Update docs and examples
First Pr for the langchain_huggingface partner Package
- Moved some of the hugging face related class from `community` to the
new `partner package`
Still needed :
- Documentation
- Tests
- Support for the new apply_chat_template in `ChatHuggingFace`
- Confirm choice of class to support for embeddings witht he
sentence-transformer team.
cc : @efriis
---------
Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- Introduce the `merge_and_split` function in the
`UpstageLayoutAnalysisLoader`.
- The `merge_and_split` function takes a list of documents and a
splitter as inputs.
- This function merges all documents and then divides them using the
`split_documents` method, which is a proprietary function of the
splitter.
- If the provided splitter is `None` (which is the default setting), the
function will simply merge the documents without splitting them.
Adds a Python REPL that executes code in a code interpreter session
using Azure Container Apps dynamic sessions.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [X] **PR title**: "community: Add source metadata to bedrock retriever
response"
- [X] **PR message**:
- **Description:** Bedrock retrieve API returns extra metadata in the
response which is currently not returned in the retriever response
- **Issue:** The change adds the metadata from bedrock retrieve API
response to the bedrock retriever in a backward compatible way. Renamed
metadata to sourceMetadata as metadata term is being used in the
Document already. This is in sync with what we are doing in llama-index
as well.
- **Dependencies:** No
- [X] **Add tests and docs**:
1. Added unit tests
2. Notebook already exists and does not need any change
3. Response from end to end testing, just to ensure backward
compatibility: `[Document(page_content='Exoplanets.',
metadata={'location': {'s3Location': {'uri':
's3://bucket/file_name.txt'}, 'type': 'S3'}, 'score': 0.46886647,
'source_metadata': {'x-amz-bedrock-kb-source-uri':
's3://bucket/file_name.txt', 'tag': 'space', 'team': 'Nasa', 'year':
1946.0}})]`
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Piyush Jain <piyushjain@duck.com>
**Description:** Added a few additional arguments to the whisper parser,
which can be consumed by the underlying API.
The prompt is especially important to fine-tune transcriptions.
---------
Co-authored-by: Roi Perlman <roi@fivesigmalabs.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Adds NeuralDBClientVectorStore to the langchain, which is
our enterprise client.
---------
Co-authored-by: kartikTAI <129414343+kartikTAI@users.noreply.github.com>
Co-authored-by: Kartik Sarangmath <kartik@thirdai.com>
**Description:**
This PR introduces chunking logic to the `DeepInfraEmbeddings` class to
handle large batch sizes without exceeding maximum batch size of the
backend. This enhancement ensures that embedding generation processes
large batches by breaking them down into smaller, manageable chunks,
each conforming to the maximum batch size limit.
**Issue:**
Fixes#21189
**Dependencies:**
No new dependencies introduced.
- Added new document_transformer: MarkdonifyTransformer, that uses
`markdonify` package with customizable options to convert HTML to
Markdown. It's similar to Html2TextTransformer, but has more flexible
options and also I've noticed that sometimes MarkdownifyTransformer
performs better than html2text one, so that's why I use markdownify on
my project.
- Added docs and tests
- Usage:
```python
from langchain_community.document_transformers import MarkdownifyTransformer
markdownify = MarkdownifyTransformer()
docs_transform = markdownify.transform_documents(docs)
```
- Example of better performance on simple task, that I've noticed:
```
<html>
<head><title>Reports on product movement</title></head>
<body>
<p data-block-key="2wst7">The reports on product movement will be useful for forming supplier orders and controlling outcomes.</p>
</body>
```
**Html2TextTransformer**:
```python
[Document(page_content='The reports on product movement will be useful for forming supplier orders and\ncontrolling outcomes.\n\n')]
# Here we can see 'and\ncontrolling', which has extra '\n' in it
```
**MarkdownifyTranformer**:
```python
[Document(page_content='Reports on product movement\n\nThe reports on product movement will be useful for forming supplier orders and controlling outcomes.')]
```
---------
Co-authored-by: Sokolov Fedor <f.sokolov@sokolov-macbook.bbrouter>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Sokolov Fedor <f.sokolov@sokolov-macbook.local>
Co-authored-by: Sokolov Fedor <f.sokolov@192.168.1.6>
### GPT4AllEmbeddings parameters
---
**Description:**
As of right now the **Embed4All** class inside _GPT4AllEmbeddings_ is
instantiated as it's default which leaves no room to customize the
chosen model and it's behavior. Thus:
- GPT4AllEmbeddings can now be instantiated with custom parameters like
a different model that shall be used.
---------
Co-authored-by: AlexJauchWalser <alexander.jauch-walser@knime.com>
The `_amake_session()` method does not allow modifying the
`self.session_factory` with
anything other than `async_sessionmaker`. This prohibits advanced uses
of `index()`.
In a RAG architecture, it is necessary to import document chunks.
To keep track of the links between chunks and documents, we can use the
`index()` API.
This API proposes to use an SQL-type record manager.
In a classic use case, using `SQLRecordManager` and a vector database,
it is impossible
to guarantee the consistency of the import. Indeed, if a crash occurs
during the import
(problem with the network, ...)
there is an inconsistency between the SQL database and the vector
database.
With the
[PR](https://github.com/langchain-ai/langchain-postgres/pull/32) we are
proposing for `langchain-postgres`,
it is now possible to guarantee the consistency of the import of chunks
into
a vector database. It's possible only if the outer session is built
with the connection.
```python
def main():
db_url = "postgresql+psycopg://postgres:password_postgres@localhost:5432/"
engine = create_engine(db_url, echo=True)
embeddings = FakeEmbeddings()
pgvector:VectorStore = PGVector(
embeddings=embeddings,
connection=engine,
)
record_manager = SQLRecordManager(
namespace="namespace",
engine=engine,
)
record_manager.create_schema()
with engine.connect() as connection:
session_maker = scoped_session(sessionmaker(bind=connection))
# NOTE: Update session_factories
record_manager.session_factory = session_maker
pgvector.session_maker = session_maker
with connection.begin():
loader = CSVLoader(
"data/faq/faq.csv",
source_column="source",
autodetect_encoding=True,
)
result = index(
source_id_key="source",
docs_source=loader.load()[:1],
cleanup="incremental",
vector_store=pgvector,
record_manager=record_manager,
)
print(result)
```
The same thing is possible asynchronously, but a bug in
`sql_record_manager.py`
in `_amake_session()` must first be fixed.
```python
async def _amake_session(self) -> AsyncGenerator[AsyncSession, None]:
"""Create a session and close it after use."""
# FIXME: REMOVE if not isinstance(self.session_factory, async_sessionmaker):~~
if not isinstance(self.engine, AsyncEngine):
raise AssertionError("This method is not supported for sync engines.")
async with self.session_factory() as session:
yield session
```
Then, it is possible to do the same thing asynchronously:
```python
async def main():
db_url = "postgresql+psycopg://postgres:password_postgres@localhost:5432/"
engine = create_async_engine(db_url, echo=True)
embeddings = FakeEmbeddings()
pgvector:VectorStore = PGVector(
embeddings=embeddings,
connection=engine,
)
record_manager = SQLRecordManager(
namespace="namespace",
engine=engine,
async_mode=True,
)
await record_manager.acreate_schema()
async with engine.connect() as connection:
session_maker = async_scoped_session(
async_sessionmaker(bind=connection),
scopefunc=current_task)
record_manager.session_factory = session_maker
pgvector.session_maker = session_maker
async with connection.begin():
loader = CSVLoader(
"data/faq/faq.csv",
source_column="source",
autodetect_encoding=True,
)
result = await aindex(
source_id_key="source",
docs_source=loader.load()[:1],
cleanup="incremental",
vector_store=pgvector,
record_manager=record_manager,
)
print(result)
asyncio.run(main())
```
---------
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Sean <sean@upstage.ai>
Co-authored-by: JuHyung-Son <sonju0427@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: YISH <mokeyish@hotmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Jason_Chen <820542443@qq.com>
Co-authored-by: Joan Fontanals <joan.fontanals.martinez@jina.ai>
Co-authored-by: Pavlo Paliychuk <pavlo.paliychuk.ca@gmail.com>
Co-authored-by: fzowl <160063452+fzowl@users.noreply.github.com>
Co-authored-by: samanhappy <samanhappy@gmail.com>
Co-authored-by: Lei Zhang <zhanglei@apache.org>
Co-authored-by: Tomaz Bratanic <bratanic.tomaz@gmail.com>
Co-authored-by: merdan <48309329+merdan-9@users.noreply.github.com>
Co-authored-by: ccurme <chester.curme@gmail.com>
Co-authored-by: Andres Algaba <andresalgaba@gmail.com>
Co-authored-by: davidefantiniIntel <115252273+davidefantiniIntel@users.noreply.github.com>
Co-authored-by: Jingpan Xiong <71321890+klaus-xiong@users.noreply.github.com>
Co-authored-by: kaka <kaka@zbyte-inc.cloud>
Co-authored-by: jingsi <jingsi@leadincloud.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Rahul Triptahi <rahul.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Shengsheng Huang <shannie.huang@gmail.com>
Co-authored-by: Michael Schock <mjschock@users.noreply.github.com>
Co-authored-by: Anish Chakraborty <anish749@users.noreply.github.com>
Co-authored-by: am-kinetica <85610855+am-kinetica@users.noreply.github.com>
Co-authored-by: Dristy Srivastava <58721149+dristysrivastava@users.noreply.github.com>
Co-authored-by: Matt <matthew.gotteiner@microsoft.com>
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
- **Description:** Fix import class name exporeted from
'playwright.async_api' and 'playwright.sync_api' to match the correct
name in playwright tool. Change import from inline guard_import to
helper function that calls guard_import to make code more readable in
gmail tool. Upgrade playwright version to 1.43.0
- **Issue:** #21354
- **Dependencies:** upgrade playwright version(this is not required for
the bugfix itself, just trying to keep dependencies fresh. I can remove
the playwright version upgrade if you want.)
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
0.2rc
migrations
- [x] Move memory
- [x] Move remaining retrievers
- [x] graph_qa chains
- [x] some dependency from evaluation code potentially on math utils
- [x] Move openapi chain from `langchain.chains.api.openapi` to
`langchain_community.chains.openapi`
- [x] Migrate `langchain.chains.ernie_functions` to
`langchain_community.chains.ernie_functions`
- [x] migrate `langchain/chains/llm_requests.py` to
`langchain_community.chains.llm_requests`
- [x] Moving `langchain_community.cross_enoders.base:BaseCrossEncoder`
->
`langchain_community.retrievers.document_compressors.cross_encoder:BaseCrossEncoder`
(namespace not ideal, but it needs to be moved to `langchain` to avoid
circular deps)
- [x] unit tests langchain -- add pytest.mark.community to some unit
tests that will stay in langchain
- [x] unit tests community -- move unit tests that depend on community
to community
- [x] mv integration tests that depend on community to community
- [x] mypy checks
Other todo
- [x] Make deprecation warnings not noisy (need to use warn deprecated
and check that things are implemented properly)
- [x] Update deprecation messages with timeline for code removal (likely
we actually won't be removing things until 0.4 release) -- will give
people more time to transition their code.
- [ ] Add information to deprecation warning to show users how to
migrate their code base using langchain-cli
- [ ] Remove any unnecessary requirements in langchain (e.g., is
SQLALchemy required?)
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
Robocorp (action server) toolkit had a limitation that the content
length returned by the tool was always cut to max 5000 chars. This was
from the time when context windows were much more limited.
This PR removes the limitation. Whatever the underlying tool provides
gets sent back to the agent.
As the robocorp toolkit no longer restricts the content, the implication
is that either the Action (tool) developer or the agent developer needs
to be aware of potentially oversized tool responses. Our point of view
is this should be the agent developer's responsibility, them being in
control of the use case and aware of the context window the LLM has.
Description: We are merging UPSTAGE_DOCUMENT_AI_API_KEY and
UPSTAGE_API_KEY into one, and only UPSTAGE_API_KEY will be used going
forward. And we changed the base class of ChatUpstage to BaseChatOpenAI.
---------
Co-authored-by: Sean <chosh0615@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Thank you for contributing to LangChain!
- [x] **PR title**: "langchain-ibm: Fix llm and embeddings 'verify'
attribute default value"
- [x] **PR message**:
- **Description:** fix default value of "verify" attribute
- **Dependencies:** `ibm_watsonx_ai`
- [x] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Co-authored-by: Erick Friis <erick@langchain.dev>
…Endpoint`
Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** add `bind_tools` and `with_structured_output` support
to `QianfanChatEndpoint`
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Description: This PR includes fix for loader_source to be fetched from
metadata in case of GdriveLoaders.
Documentation: NA
Unit Test: NA
Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
- it's only node ids that are limited
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
Thank you for contributing to LangChain!
- [ ] **HuggingFaceInferenceAPIEmbeddings**: "Additional Headers"
- Where: langchain, community, embeddings. huggingface.py.
- Community: add additional headers when needed by custom HuggingFace
TEI embedding endpoints. HuggingFaceInferenceAPIEmbeddings"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Adding the `additional_headers` to be passed to
requests library if needed
- **Dependencies:** none
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. Tested with locally available TEI endpoints with and without
`additional_headers`
2. Example Usage
```python
embeddings=HuggingFaceInferenceAPIEmbeddings(
api_key=MY_CUSTOM_API_KEY,
api_url=MY_CUSTOM_TEI_URL,
additional_headers={
"Content-Type": "application/json"
}
)
```
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Massimiliano Pronesti <massimiliano.pronesti@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>