Commit Graph

2912 Commits

Author SHA1 Message Date
Hank
6d6226d96d
docs: Remove accidental extra ``` in QuickStart doc. (#16740)
Description: One too many set of triple-ticks in a sample code block in
the QuickStart doc was causing "\`\`\`shell" to appear in the shell
command that was being demonstrated. I just deleted the extra "```".
Issue: Didn't see one
Dependencies: None
2024-01-29 13:55:26 -08:00
Volodymyr Machula
32c5be8b73
community[minor]: Connery Tool and Toolkit (#14506)
## Summary

This PR implements the "Connery Action Tool" and "Connery Toolkit".
Using them, you can integrate Connery actions into your LangChain agents
and chains.

Connery is an open-source plugin infrastructure for AI.

With Connery, you can easily create a custom plugin with a set of
actions and seamlessly integrate them into your LangChain agents and
chains. Connery will handle the rest: runtime, authorization, secret
management, access management, audit logs, and other vital features.
Additionally, Connery and our community offer a wide range of
ready-to-use open-source plugins for your convenience.

Learn more about Connery:

- GitHub: https://github.com/connery-io/connery-platform
- Documentation: https://docs.connery.io
- Twitter: https://twitter.com/connery_io

## TODOs

- [x] API wrapper
   - [x] Integration tests
- [x] Connery Action Tool
   - [x] Docs
   - [x] Example
   - [x] Integration tests
- [x] Connery Toolkit
  - [x] Docs
  - [x] Example
- [x] Formatting (`make format`)
- [x] Linting (`make lint`)
- [x] Testing (`make test`)
2024-01-29 12:45:03 -08:00
Neli Hateva
c95facc293
langchain[minor], community[minor]: Implement Ontotext GraphDB QA Chain (#16019)
- **Description:** Implement Ontotext GraphDB QA Chain
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Twitter handle:** @OntotextGraphDB
2024-01-29 12:25:53 -08:00
Kirushikesh DB
47bd58dc11
docs: Added illustration of using RetryOutputParser with LLMChain (#16722)
**Description:**
Updated the retry.ipynb notebook, it contains the illustrations of
RetryOutputParser in LangChain. But the notebook lacks to explain the
compatibility of RetryOutputParser with existing chains. This changes
adds some code to illustrate the workflow of using RetryOutputParser
with the user chain.

Changes:
1. Changed RetryWithErrorOutputParser with RetryOutputParser, as the
markdown text says so.
2. Added code at the last of the notebook to define a chain which passes
the LLM completions to the retry parser, which can be customised for
user needs.

**Issue:** 
Since RetryOutputParser/RetryWithErrorOutputParser does not implement
the parse function it cannot be used with LLMChain directly like
[this](https://python.langchain.com/docs/expression_language/cookbook/prompt_llm_parser#prompttemplate-llm-outputparser).
This also raised various issues #15133 #12175 #11719 still open, instead
of adding new features/code changes its best to explain the "how to
integrate LLMChain with retry parsers" clearly with an example in the
corresponding notebook.

Inspired from:
https://github.com/langchain-ai/langchain/issues/15133#issuecomment-1868972580

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-29 11:24:52 -08:00
Jael Gu
a1aa3a657c
community[patch]: Milvus supports add & delete texts by ids (#16256)
# Description

To support [langchain
indexing](https://python.langchain.com/docs/modules/data_connection/indexing)
as requested by users, vectorstore Milvus needs to support:
- document addition by id (`add_documents` method with `ids` argument)
- delete by id (`delete` method with `ids` argument)

Example usage:

```python
from langchain.indexes import SQLRecordManager, index
from langchain.schema import Document
from langchain_community.vectorstores import Milvus
from langchain_openai import OpenAIEmbeddings

collection_name = "test_index"
embedding = OpenAIEmbeddings()
vectorstore = Milvus(embedding_function=embedding, collection_name=collection_name)

namespace = f"milvus/{collection_name}"
record_manager = SQLRecordManager(
    namespace, db_url="sqlite:///record_manager_cache.sql"
)
record_manager.create_schema()

doc1 = Document(page_content="kitty", metadata={"source": "kitty.txt"})
doc2 = Document(page_content="doggy", metadata={"source": "doggy.txt"})

index(
    [doc1, doc1, doc2],
    record_manager,
    vectorstore,
    cleanup="incremental",  # None, "incremental", or "full"
    source_id_key="source",
)
```

# Fix issues

Fix https://github.com/milvus-io/milvus/issues/30112

---------

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-29 11:19:50 -08:00
Abhinav
8e44363ec9
langchain_community: Update documentation for installing llama-cpp-python on windows (#16666)
**Description** : This PR updates the documentation for installing
llama-cpp-python on Windows.

- Updates install command to support pyproject.toml
- Makes CPU/GPU install instructions clearer
- Adds reinstall with GPU support command

**Issue**: Existing
[documentation](https://python.langchain.com/docs/integrations/llms/llamacpp#compiling-and-installing)
lists the following commands for installing llama-cpp-python
```
python setup.py clean
python setup.py install
````
The current version of the repo does not include a `setup.py` and uses a
`pyproject.toml` instead.
This can be replaced with
```
python -m pip install -e .
```
As explained in
https://github.com/abetlen/llama-cpp-python/issues/965#issuecomment-1837268339
**Dependencies**: None
**Twitter handle**: None

---------

Co-authored-by: blacksmithop <angstycoder101@gmaii.com>
2024-01-29 08:41:29 -08:00
Benito Geordie
f3fdc5c5da
community: Added integrations for ThirdAI's NeuralDB with Retriever and VectorStore frameworks (#15280)
**Description:** Adds ThirdAI NeuralDB retriever and vectorstore
integration. NeuralDB is a CPU-friendly and fine-tunable text retrieval
engine.
2024-01-29 08:35:42 -08:00
Jonathan Bennion
815896ff13
langchain: pubmed tool path update in doc (#16716)
- **Description:** The current pubmed tool documentation is referencing
the path to langchain core not the path to the tool in community. The
old tool redirects anyways, but for efficiency of using the more direct
path, just adding this documentation so it references the new path
  - **Issue:** doesn't fix an issue
  - **Dependencies:** no dependencies
  - **Twitter handle:** rooftopzen
2024-01-29 08:25:29 -08:00
Lance Martin
1bfadecdd2
Update Slack agent toolkit (#16732)
Co-authored-by: taimoOptTech <132860814+taimo3810@users.noreply.github.com>
2024-01-29 08:03:44 -08:00
Choi JaeHun
ba70630829
docs: Syntax correction according to langchain version update in 'Retry Parser' tutorial example (#16699)
- **Description:** Syntax correction according to langchain version
update in 'Retry Parser' tutorial example,
- **Issue:** #16698

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-28 16:53:04 -08:00
Bob Lin
0866a984fe
Update n_gpu_layers"s description (#16685)
The `n_gpu_layers` parameter in `llama.cpp` supports the use of `-1`,
which means to offload all layers to the GPU, so the document has been
updated.

Ref:
35918873b4/llama_cpp/server/settings.py (L29C22-L29C117)


35918873b4/llama_cpp/llama.py (L125)
2024-01-28 16:46:50 -08:00
Daniel Erenrich
0600998f38
community: Wikidata tool support (#16691)
- **Description:** Adds Wikidata support to langchain. Can read out
documents from Wikidata.
  - **Issue:** N/A
- **Dependencies:** Adds implicit dependencies for
`wikibase-rest-api-client` (for turning items into docs) and
`mediawikiapi` (for hitting the search endpoint)
  - **Twitter handle:** @derenrich

You can see an example of this tool used in a chain
[here](https://nbviewer.org/urls/d.erenrich.net/upload/Wikidata_Langchain.ipynb)
or
[here](https://nbviewer.org/urls/d.erenrich.net/upload/Wikidata_Lars_Kai_Hansen.ipynb)

<!-- Thank you for contributing to LangChain!


Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2024-01-28 16:45:21 -08:00
Owen Sims
e451c8adc1
Community: Update Ionic Shopping Docs (#16700)
- **Description:** Update to docs as originally introduced in
https://github.com/langchain-ai/langchain/pull/16649 (reviewed by
@baskaryan),
- **Twitter handle:**
[@ioniccommerce](https://twitter.com/ioniccommerce)
2024-01-28 16:39:49 -08:00
Yelin Zhang
bc7607a4e9
docs: remove iprogress warnings (#16697)
- **Description:** removes iprogress warning texts from notebooks,
resulting in a little nicer to read documentation
2024-01-28 16:38:14 -08:00
ARKA1112
3c387bc12d
docs: Error when importing packages from pydantic [docs] (#16564)
URL : https://python.langchain.com/docs/use_cases/extraction

Desc: 
<b> While the following statement executes successfully, it throws an
error which is described below when we use the imported packages</b>
 ```py 
from pydantic import BaseModel, Field, validator
```
Code: 
```python
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import (
    PromptTemplate,
)
from langchain_openai import OpenAI
from pydantic import BaseModel, Field, validator

# Define your desired data structure.
class Joke(BaseModel):
    setup: str = Field(description="question to set up a joke")
    punchline: str = Field(description="answer to resolve the joke")

    # You can add custom validation logic easily with Pydantic.
    @validator("setup")
    def question_ends_with_question_mark(cls, field):
        if field[-1] != "?":
            raise ValueError("Badly formed question!")
        return field
```

Error:
```md
PydanticUserError: The `field` and `config` parameters are not available
in Pydantic V2, please use the `info` parameter instead.

For further information visit
https://errors.pydantic.dev/2.5/u/validator-field-config-info
```

Solution:
Instead of doing:
```py
from pydantic import BaseModel, Field, validator
```
We should do:
```py
from langchain_core.pydantic_v1 import BaseModel, Field, validator
```
Thanks.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-27 16:46:48 -08:00
Leonid Ganeline
5e73603e8a
docs: DeepInfra provider page update (#16665)
- added description, links
- consistent formatting
- added links to the example pages
2024-01-27 16:05:29 -08:00
Jarod Stewart
0bc397957b
docs: document Ionic Tool (#16649)
- **Description:** Documentation for the Ionic Tool. A shopping
assistant tool that effortlessly adds e-commerce capabilities to your
Agent.
2024-01-26 16:02:07 -08:00
Seungwoo Ryu
570b4f8e66
docs: Update openai_tools.ipynb (#16618)
typo
2024-01-26 15:26:27 -08:00
Callum
6a75ef74ca
docs: Fix typo in XML agent documentation (#16645)
This is a tiny PR that just replacer "moduels" with "modules" in the
documentation for XML agents.
2024-01-26 14:59:46 -08:00
baichuan-assistant
70ff54eace
community[minor]: Add Baichuan Text Embedding Model and Baichuan Inc introduction (#16568)
- **Description:** Adding Baichuan Text Embedding Model and Baichuan Inc
introduction.

Baichuan Text Embedding ranks #1 in C-MTEB leaderboard:
https://huggingface.co/spaces/mteb/leaderboard

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-26 12:57:26 -08:00
Ghani
e30c6662df
Langchain-community : EdenAI chat integration. (#16377)
- **Description:** This PR adds [EdenAI](https://edenai.co/) for the
chat model (already available in LLM & Embeddings). It supports all
[ChatModel] functionality: generate, async generate, stream, astream and
batch. A detailed notebook was added.

  - **Dependencies**: No dependencies are added as we call a rest API.

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-01-26 09:56:43 -05:00
Bagatur
61e876aad8
openai[patch]: Explicitly support embedding dimensions (#16596) 2024-01-25 15:16:04 -08:00
Bagatur
6c89507988
docs: add rag citations page (#16549) 2024-01-25 13:51:41 -08:00
Bagatur
db80832e4f
docs: output parser nits (#16588) 2024-01-25 13:20:48 -08:00
Bagatur
ef42d9d559
core[patch], community[patch], openai[patch]: consolidate openai tool… (#16485)
… converters

One way to convert anything to an OAI function:
convert_to_openai_function
One way to convert anything to an OAI tool: convert_to_openai_tool
Corresponding bind functions on OAI models: bind_functions, bind_tools
2024-01-25 13:18:46 -08:00
Brian Burgin
148347e858
community[minor]: Add LiteLLM Router Integration (#15588)
community:

  - **Description:**
- Add new ChatLiteLLMRouter class that allows a client to use a LiteLLM
Router as a LangChain chat model.
- Note: The existing ChatLiteLLM integration did not cover the LiteLLM
Router class.
    - Add tests and Jupyter notebook.
  - **Issue:** None
  - **Dependencies:** Relies on existing ChatLiteLLM integration
  - **Twitter handle:** @bburgin_0

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-25 11:03:05 -08:00
Bob Lin
35e60728b7
docs: Fix broken urls (#16559) 2024-01-25 09:20:05 -08:00
Bob Lin
6023953ea7
docs: Fix github link (#16560) 2024-01-25 09:19:09 -08:00
Erick Friis
adc008407e
exa: init pkg (#16553) 2024-01-24 20:57:17 -07:00
Rave Harpaz
c4e9c9ca29
community[minor]: Add OCI Generative AI integration (#16548)
<!-- Thank you for contributing to LangChain!

Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.

Replace this entire comment with:
- **Description:** Adding Oracle Cloud Infrastructure Generative AI
integration. Oracle Cloud Infrastructure (OCI) Generative AI is a fully
managed service that provides a set of state-of-the-art, customizable
large language models (LLMs) that cover a wide range of use cases, and
which is available through a single API. Using the OCI Generative AI
service you can access ready-to-use pretrained models, or create and
host your own fine-tuned custom models based on your own data on
dedicated AI clusters.
https://docs.oracle.com/en-us/iaas/Content/generative-ai/home.htm
  - **Issue:** None,
  - **Dependencies:** OCI Python SDK,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
Passed

See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

we provide unit tests. However, we cannot provide integration tests due
to Oracle policies that prohibit public sharing of api keys.
 
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->

---------

Co-authored-by: Arthur Cheng <arthur.cheng@oracle.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 18:23:50 -08:00
Leonid Ganeline
f6a05e964b
docs: Hugging Face update (#16490)
- added missed integrations to the platform page
- updated integration examples: added links and fixed formats
2024-01-24 16:59:00 -08:00
Harel Gal
a91181fe6d
community[minor]: add support for Guardrails for Amazon Bedrock (#15099)
Added support for optionally supplying 'Guardrails for Amazon Bedrock'
on both types of model invocations (batch/regular and streaming) and for
all models supported by the Amazon Bedrock service.

@baskaryan  @hwchase17

```python 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  guardrails={"id": " <guardrail_id>",
                              "version": "<guardrail_version>",
                               "trace": True}, callbacks=[BedrockAsyncCallbackHandler()])

class BedrockAsyncCallbackHandler(AsyncCallbackHandler):
    """Async callback handler that can be used to handle callbacks from langchain."""

    async def on_llm_error(
            self,
            error: BaseException,
            **kwargs: Any,
    ) -> Any:
        reason = kwargs.get("reason")
        if reason == "GUARDRAIL_INTERVENED":
           # kwargs contains additional trace information sent by 'Guardrails for Bedrock' service.
            print(f"""Guardrails: {kwargs}""")


# streaming 
llm = Bedrock(model_id="<model_id>", client=bedrock,
                  model_kwargs={},
                  streaming=True,
                  guardrails={"id": "<guardrail_id>",
                              "version": "<guardrail_version>"})
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:44:19 -08:00
Martin Kolb
04651f0248
community[minor]: VectorStore integration for SAP HANA Cloud Vector Engine (#16514)
- **Description:**
This PR adds a VectorStore integration for SAP HANA Cloud Vector Engine,
which is an upcoming feature in the SAP HANA Cloud database
(https://blogs.sap.com/2023/11/02/sap-hana-clouds-vector-engine-announcement/).

  - **Issue:** N/A
- **Dependencies:** [SAP HANA Python
Client](https://pypi.org/project/hdbcli/)
  - **Twitter handle:** @sapopensource

Implementation of the integration:
`libs/community/langchain_community/vectorstores/hanavector.py`

Unit tests:
`libs/community/tests/unit_tests/vectorstores/test_hanavector.py`

Integration tests:
`libs/community/tests/integration_tests/vectorstores/test_hanavector.py`

Example notebook:
`docs/docs/integrations/vectorstores/hanavector.ipynb`

Access credentials for execution of the integration tests can be
provided to the maintainers.

---------

Co-authored-by: sascha <sascha.stoll@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-01-24 14:05:07 -08:00
Bob Lin
54dd8e52a8
docs: Updated comments about n_gpu_layers in the Metal section (#16501)
Ref: https://github.com/langchain-ai/langchain/issues/16502
2024-01-24 13:38:48 -08:00
Anastasiia Manokhina
ce595f0203
docs:Updated integration docs structure for chat/google_vertex_ai_palm (#16201)
Description: 

- checked that the doc chat/google_vertex_ai_palm is using new
functions: invoke, stream etc.
- added Gemini example
- fixed wrong output in Sanskrit example

Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None
2024-01-24 10:21:32 -08:00
Erick Friis
8d299645f9
docs: rm output (#16519) 2024-01-24 10:19:34 -07:00
Lance Martin
0b740ebd49
Update SQL agent toolkit docs (#16409) 2024-01-24 09:03:17 -08:00
Francisco Ingham
13cf4594f4
docs: added a few suggestions for sql docs (#16508) 2024-01-24 08:48:41 -08:00
Eugene Yurtsev
6004e9706f
Docs: Add streaming section (#16468)
Adds a streaming section to LangChain documentation, explaining
`stream`/`astream` API and `astream_events` API.
2024-01-24 10:38:39 -05:00
Tipwheal
66aafc0573
Docs: typo in tool use quick start page (#16494)
Minor typo fix
2024-01-24 10:37:12 -05:00
BeatrixCohere
2b2285dac0
docs: Update cohere rerank and comparison docs (#16198)
- **Description:** Update the cohere rerank docs to use cohere
embeddings
  - **Issue:** n/a
  - **Dependencies:** n/a
  - **Twitter handle:** n/a
2024-01-23 19:39:42 -08:00
Raunak
476bf8b763
community[patch]: Load list of files using UnstructuredFileLoader (#16216)
- **Description:** Updated `_get_elements()` function of
`UnstructuredFileLoader `class to check if the argument self.file_path
is a file or list of files. If it is a list of files then it iterates
over the list of file paths, calls the partition function for each one,
and appends the results to the elements list. If self.file_path is not a
list, it calls the partition function as before.
  
  - **Issue:** Fixed #15607,
  - **Dependencies:** NA
  - **Twitter handle:** NA

Co-authored-by: H161961 <Raunak.Raunak@Honeywell.com>
2024-01-23 19:37:37 -08:00
Xudong Sun
019b6ebe8d
community[minor]: Add iFlyTek Spark LLM chat model support (#13389)
- **Description:** This PR enables LangChain to access the iFlyTek's
Spark LLM via the chat_models wrapper.
  - **Dependencies:** websocket-client ^1.6.1
  - **Tag maintainer:** @baskaryan 

### SparkLLM chat model usage

Get SparkLLM's app_id, api_key and api_secret from [iFlyTek SparkLLM API
Console](https://console.xfyun.cn/services/bm3) (for more info, see
[iFlyTek SparkLLM Intro](https://xinghuo.xfyun.cn/sparkapi) ), then set
environment variables `IFLYTEK_SPARK_APP_ID`, `IFLYTEK_SPARK_API_KEY`
and `IFLYTEK_SPARK_API_SECRET` or pass parameters when using it like the
demo below:

```python3
from langchain.chat_models.sparkllm import ChatSparkLLM

client = ChatSparkLLM(
    spark_app_id="<app_id>",
    spark_api_key="<api_key>",
    spark_api_secret="<api_secret>"
)
```
2024-01-23 19:23:46 -08:00
Eugene Yurtsev
d898d2f07b
docs: Fix version in which astream_events was released (#16481)
Fix typo in version
2024-01-23 18:41:44 -08:00
bu2kx
ff3163297b
community[minor]: Add KDBAI vector store (#12797)
Addition of KDBAI vector store (https://kdb.ai).

Dependencies: `kdbai_client` v0.1.2 Python package.

Sample notebook: `docs/docs/integrations/vectorstores/kdbai.ipynb`

Tag maintainer: @bu2kx
Twitter handle: @kxsystems
2024-01-23 18:37:01 -08:00
JongRok BAEK
4ec3fe4680
docs: Updated integration docs structure for chat/anthropic (#16268)
Description: 
- Added output and environment variables
- Updated the documentation for chat/anthropic, changing references from
`langchain.schema` to `langchain_core.prompts`.

Issue: https://github.com/langchain-ai/langchain/issues/15664
Dependencies: None
Twitter handle: None

Since this is my first open-source PR, please feel free to point out any
mistakes, and I'll be eager to make corrections.
2024-01-23 18:36:28 -08:00
Shivani Modi
4e160540ff
community[minor]: Adding Konko Completion endpoint (#15570)
This PR introduces update to Konko Integration with LangChain.

1. **New Endpoint Addition**: Integration of a new endpoint to utilize
completion models hosted on Konko.

2. **Chat Model Updates for Backward Compatibility**: We have updated
the chat models to ensure backward compatibility with previous OpenAI
versions.

4. **Updated Documentation**: Comprehensive documentation has been
updated to reflect these new changes, providing clear guidance on
utilizing the new features and ensuring seamless integration.

Thank you to the LangChain team for their exceptional work and for
considering this PR. Please let me know if any additional information is
needed.

---------

Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MacBook-Pro.local>
Co-authored-by: Shivani Modi <shivanimodi@Shivanis-MBP.lan>
2024-01-23 18:22:32 -08:00
Facundo Santiago
92e6a641fd
feat: adding paygo api support for Azure ML / Azure AI Studio (#14560)
- **Description:** Introducing support for LLMs and Chat models running
in Azure AI studio and Azure ML using the new deployment mode
pay-as-you-go (model as a service).
- **Issue:** NA
- **Dependencies:** None.
- **Tag maintainer:** @prakharg-msft @gdyre 
- **Twitter handle:** @santiagofacundo

Examples added:
*
[docs/docs/integrations/llms/azure_ml.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_endpoint.ipynb)
*
[docs/docs/integrations/chat/azureml_chat_endpoint.ipynb](https://github.com/santiagxf/langchain/blob/santiagxf/azureml-endpoints-paygo-community/docs/docs/integrations/chat/azureml_chat_endpoint.ipynb)

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-23 17:08:51 -08:00
baichuan-assistant
20fcd49348
community: Fix Baichuan Chat. (#15207)
- **Description:** Baichuan Chat (with both Baichuan-Turbo and
Baichuan-Turbo-192K models) has updated their APIs. There are breaking
changes. For example, BAICHUAN_SECRET_KEY is removed in the latest API
but is still required in Langchain. Baichuan's Langchain integration
needs to be updated to the latest version.
  - **Issue:** #15206
  - **Dependencies:** None,
  - **Twitter handle:** None

@hwchase17.

Co-authored-by: BaiChuanHelper <wintergyc@WinterGYCs-MacBook-Pro.local>
2024-01-23 17:01:57 -08:00
gcheron
cfc225ecb3
community: SQLStrStore/SQLDocStore provide an easy SQL alternative to InMemoryStore to persist data remotely in a SQL storage (#15909)
**Description:**

- Implement `SQLStrStore` and `SQLDocStore` classes that inherits from
`BaseStore` to allow to persist data remotely on a SQL server.
- SQL is widely used and sometimes we do not want to install a caching
solution like Redis.
- Multiple issues/comments complain that there is no easy remote and
persistent solution that are not in memory (users want to replace
InMemoryStore), e.g.,
https://github.com/langchain-ai/langchain/issues/14267,
https://github.com/langchain-ai/langchain/issues/15633,
https://github.com/langchain-ai/langchain/issues/14643,
https://stackoverflow.com/questions/77385587/persist-parentdocumentretriever-of-langchain
- This is particularly painful when wanting to use
`ParentDocumentRetriever `
- This implementation is particularly useful when:
     * it's expensive to construct an InMemoryDocstore/dict
     * you want to retrieve documents from remote sources
     * you just want to reuse existing objects
- This implementation integrates well with PGVector, indeed, when using
PGVector, you already have a SQL instance running. `SQLDocStore` is a
convenient way of using this instance to store documents associated to
vectors. An integration example with ParentDocumentRetriever and
PGVector is provided in docs/docs/integrations/stores/sql.ipynb or
[here](https://github.com/gcheron/langchain/blob/sql-store/docs/docs/integrations/stores/sql.ipynb).
- It persists `str` and `Document` objects but can be easily extended.

 **Issue:**

Provide an easy SQL alternative to `InMemoryStore`.

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2024-01-23 16:50:48 -08:00