Commit Graph

5296 Commits

Author SHA1 Message Date
Anar
55fef4b64b
implemented add files method in LLMRails (#11518)
This PR provides add files method with LLMRails. Implemented here are:

docs/extras/integrations/vectorstores/llm-rails.ipynb

---------

Co-authored-by: Anar Aliyev <aaliyev@mgmt.cloudnet.services>
2023-10-09 16:29:43 -07:00
unifyh
fd7f129f10
Docs: Fix broken line breaks in snippets (#11523)
**Description:**
This PR fix some code snippets that have raw `\n`'s instead of actual
line breaks.

**Issue:**
Currently some snippets look like this:

![image](https://github.com/langchain-ai/langchain/assets/18213435/355b4911-38e9-4ba4-8570-f928557b6c13)

Affected pages:
-
https://python.langchain.com/docs/integrations/providers/predictionguard#example-usage
-
https://python.langchain.com/docs/modules/agents/how_to/custom_llm_agent#set-up-environment
-
https://python.langchain.com/docs/modules/chains/foundational/llm_chain#get-started
-
https://python.langchain.com/docs/integrations/providers/shaleprotocol#how-to

**Tag maintainer:**
@hwchase17
2023-10-09 15:40:27 -07:00
Stephen Hankinson
316dddc7cd
fix wording of query_sql_database_tool_description (#11530)
- **Description:** Fixes minor typo for the
query_sql_database_tool_description in the db toolkit
  - **Issue:** N/A
  - **Dependencies:** N/A
  - **Tag maintainer:** @nfcampos 
  - **Twitter handle:** N/A
2023-10-09 15:32:45 -07:00
Ash Vardanian
1acfe86353
Accelerating Math Utils with SimSIMD (#11566)
LangChain relies on NumPy to compute cosine distances, which becomes a
bottleneck with the growing dimensionality and number of embeddings. To
avoid this bottleneck, in our libraries at
[Unum](https://github.com/unum-cloud), we have created a specialized
package - [SimSIMD](https://github.com/ashvardanian/simsimd), that knows
how to use newer hardware capabilities. Compared to SciPy and NumPy, it
reaches 3x-200x performance for various data types. Since publication,
several LangChain users have asked me if I can integrate it into
LangChain to accelerate their workflows, so here I am 🤗

## Benchmarking

To conduct benchmarks locally, run this in your Jupyter:

```py
import numpy as np
import scipy as sp
import simsimd as simd
import timeit as tt

def cosine_similarity_np(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
    X_norm = np.linalg.norm(X, axis=1)
    Y_norm = np.linalg.norm(Y, axis=1)
    with np.errstate(divide="ignore", invalid="ignore"):
        similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
    similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
    return similarity

def cosine_similarity_sp(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
    return 1 - sp.spatial.distance.cdist(X, Y, metric='cosine')

def cosine_similarity_simd(X: np.ndarray, Y: np.ndarray) -> np.ndarray:
    return 1 - simd.cdist(X, Y, metric='cosine')

X = np.random.randn(1, 1536).astype(np.float32)
Y = np.random.randn(1, 1536).astype(np.float32)
repeat = 1000

print("NumPy: {:,.0f} ops/s, SciPy: {:,.0f} ops/s, SimSIMD: {:,.0f} ops/s".format(
    repeat / tt.timeit(lambda: cosine_similarity_np(X, Y), number=repeat),
    repeat / tt.timeit(lambda: cosine_similarity_sp(X, Y), number=repeat),
    repeat / tt.timeit(lambda: cosine_similarity_simd(X, Y), number=repeat),
))
```

## Results

I ran this on an M2 Pro Macbook for various data types and different
number of rows in `X` and reformatted the results as a table for
readability:

| Data Type | NumPy | SciPy | SimSIMD |
| :--- | ---: | ---: | ---: |
| `f32, 1` | 59,114 ops/s | 80,330 ops/s | 475,351 ops/s |
| `f16, 1` | 32,880 ops/s | 82,420 ops/s | 650,177 ops/s |
| `i8, 1` | 47,916 ops/s | 115,084 ops/s | 866,958 ops/s |
| `f32, 10` | 40,135 ops/s | 24,305 ops/s | 185,373 ops/s |
| `f16, 10` | 7,041 ops/s | 17,596 ops/s | 192,058 ops/s |
| `f16, 10` | 21,989 ops/s | 25,064 ops/s | 619,131 ops/s |
| `f32, 100` | 3,536 ops/s | 3,094 ops/s | 24,206 ops/s |
| `f16, 100` | 900 ops/s | 2,014 ops/s | 23,364 ops/s |
| `i8, 100` | 5,510 ops/s | 3,214 ops/s | 143,922 ops/s |

It's important to note that SimSIMD will underperform if both matrices
are huge.
That, however, seems to be an uncommon usage pattern for LangChain
users.
You can find a much more detailed performance report for different
hardware models here:

- [Apple M2
Pro](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-1-performance-on-apple-m2-pro).
- [4th Gen Intel Xeon
Platinum](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-2-performance-on-4th-gen-intel-xeon-platinum-8480).
- [AWS Graviton
3](https://ashvardanian.com/posts/simsimd-faster-scipy/#appendix-3-performance-on-aws-graviton-3).
  
## Additional Notes

1. Previous version used `X = np.array(X)`, to repackage lists of lists.
It's an anti-pattern, as it will use double-precision floating-point
numbers, which are slow on both CPUs and GPUs. I have replaced it with
`X = np.array(X, dtype=np.float32)`, but a more selective approach
should be discussed.
2. In numerical computations, it's recommended to explicitly define
tolerance levels, which were previously avoided in
`np.allclose(expected, actual)` calls. For now, I've set absolute
tolerance to distance computation errors as 0.01: `np.allclose(expected,
actual, atol=1e-2)`.

---

  - **Dependencies:** adds `simsimd` dependency
  - **Tag maintainer:** @hwchase17
  - **Twitter handle:** @ashvardanian

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-09 14:56:55 -07:00
benchello
5de64e6d60
Add option to specify metadata columns in CSV loader (#11576)
#### Description
This PR adds the option to specify additional metadata columns in the
CSVLoader beyond just `Source`.

The current CSV loader includes all columns in `page_content` and if we
want to have columns specified for `page_content` and `metadata` we have
to do something like the below.:
```
csv = pd.read_csv(
        "path_to_csv"
    ).to_dict("records")

documents = [
        Document(
            page_content=doc["content"],
            metadata={
                "last_modified_by": doc["last_modified_by"],
                "point_of_contact": doc["point_of_contact"],
            }
        ) for doc in csv
    ]
```
#### Usage
Example Usage:
```
csv_test  =  CSVLoader(
      file_path="path_to_csv", 
      metadata_columns=["last_modified_by", "point_of_contact"]
 )
```
Example CSV:
```
content, last_modified_by, point_of_contact
"hello world", "Person A", "Person B"
```

Example Result:
```
Document {
 page_content: "hello world"
 metadata: {
 row: '0',
 source: 'path_to_csv',
 last_modified_by: 'Person A',
 point_of_contact: 'Person B',
 }
```

---------

Co-authored-by: Ben Chello <bchello@dropbox.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-09 14:56:45 -07:00
Stephen Hankinson
447a523662
fix comments in output format (#11536)
- **Description:** Fixes the comments in the ConvoOutputParser. Because
the \\\\ is escaping a single \\, they render something like:
`"action_input": string \ The input to the action` in the prompt.
Changing this to \\\\\\\\ lets it escape two slashes so that it renders
a proper comment: `"action_input": string \\ The input to the action`
  - **Issue:** N/A
  - **Dependencies:** 
  - **Tag maintainer:** @hwchase17
  - **Twitter handle:**
2023-10-09 14:55:44 -07:00
Michael Landis
8e45f720a8
feat: add momento vector index as a vector store provider (#11567)
**Description**:

- Added Momento Vector Index (MVI) as a vector store provider. This
includes an implementation with docstrings, integration tests, a
notebook, and documentation on the docs pages.
- Updated the Momento dependency in pyproject.toml and the lock file to
enable access to MVI.
- Refactored the Momento cache and chat history session store to prefer
using "MOMENTO_API_KEY" over "MOMENTO_AUTH_TOKEN" for consistency with
MVI. This change is backwards compatible with the previous "auth_token"
variable usage. Updated the code and tests accordingly.

**Dependencies**:

- Updated Momento dependency in pyproject.toml.

**Testing**:

- Run the integration tests with a Momento API key. Get one at the
[Momento Console](https://console.gomomento.com) for free. MVI is
available in AWS us-west-2 with a superuser key.
- `MOMENTO_API_KEY=<your key> poetry run pytest
tests/integration_tests/vectorstores/test_momento_vector_index.py`

**Tag maintainer:**

@eyurtsev

**Twitter handle**:

Please mention @momentohq for this addition to langchain. With the
integration of Momento Vector Index, Momento caching, and session store,
Momento provides serverless support for the core langchain data needs.

Also mention @mlonml for the integration.
2023-10-09 14:02:59 -07:00
Eugene Yurtsev
ca2eed36b7
LangChain cli fix a few bugs (#11573)
Code was assuming that `git` and `poetry` exist. In addition, it was not
ignoring pycache files that get generated during run time
2023-10-09 13:30:16 -07:00
MSFTeegarden
923e9f9596
Add Azure Redis example (#11570)
**Description**
This PR adds an additional Example to the Redis integration
documentation. [The
example](https://learn.microsoft.com/azure/azure-cache-for-redis/cache-tutorial-vector-similarity)
is a step-by-step walkthrough of using Azure Cache for Redis and Azure
OpenAI for vector similarity search, using LangChain extensively
throughout.

**Issue**
Nothing specific, just adding an additional example.

**Dependencies**
None.

**Tag Maintainer**
Tagging @hwchase17 :)
2023-10-09 13:27:03 -07:00
Hugues Chocart
258ae1ba5f
[LLMonitor Callback Handler]: Add error handling (#11563)
Wraps every callback handler method in error handlers to avoid breaking
users' programs when an error occurs inside the handler.

Thanks @valdo99 for the suggestion 🙂
2023-10-09 13:26:35 -07:00
Eugene Yurtsev
2aabfafe1e
Module documentation for langchain runnables (#11550)
Add in code documentation for langchain runnables module.
2023-10-09 16:02:29 -04:00
Eugene Yurtsev
d8fa94e6fa
RunnablePassthrough: In code documentation (#11552)
Add in code documentation for a runnable passthrough
2023-10-09 16:02:16 -04:00
Eugene Yurtsev
b42f218cfc
RunnableLambda: Add in code docs (#11521)
Add in code docs for Runnable Lambda
2023-10-09 14:37:46 -04:00
maks-operlejn-ds
f64522fbaf
Reset deanonymizer mapping (#11559)
@hwchase17 @baskaryan
2023-10-09 11:11:05 -07:00
maks-operlejn-ds
b14b65d62a
Support all presidio entities (#11558)
https://microsoft.github.io/presidio/supported_entities/

@baskaryan @hwchase17
2023-10-09 11:10:46 -07:00
maks-operlejn-ds
4d62def9ff
Better deanonymizer matching strategy (#11557)
@baskaryan, @hwchase17
2023-10-09 11:10:29 -07:00
Ash Vardanian
a992b9670d
Fix: Missing DuckDuckGo package version (#11535)
[The `duckduckgo-search` v3.9.2 was removed from
PyPi](https://pypi.org/project/duckduckgo-search/#history). That breaks
the build.

  - **Description:** refreshes the Poetry dependency to v3.9.3
  - **Tag maintainer:** @baskaryan
  - **Twitter handle:** @ashvardanian
2023-10-09 10:55:46 -07:00
Bagatur
0a754fa286
redirect langsmith guides (#11562) 2023-10-09 09:58:03 -07:00
Nuno Campos
2f2a5fd582
Update Dockerfile.base (#11556) 2023-10-09 16:43:04 +01:00
Bagatur
8932ed3f07
bump 311 (#11555) 2023-10-09 08:17:07 -07:00
Bagatur
e7a0def1bc
QoL improvements to query constructor (#11504)
updating query constructor and self query retriever to
- make it easier to pass in examples
- validate attributes used in query
- remove invalid parts of query
- make it easier to get + edit prompt
- make query constructor a runnable
- make self query retriever use as runnable
2023-10-09 08:10:52 -07:00
Taikono-Himazin
eec53fa294
Added autodetect_encoding option to csvLoader (#11327) 2023-10-09 08:06:43 -07:00
Holt Skinner
09c66fe04f
feat: Update Google Document AI Parser (#11413)
- **Description:** Code Refactoring, Documentation Improvements for
Google Document AI PDF Parser
  - Adds Online (synchronous) processing option.
  - Adds default field mask to limit payload size.
  - Skips Human review by default.
- **Issue:** Fixes #10589

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-09 08:04:25 -07:00
Nuno Campos
628cc4cce8
Rename RunnableMap to RunnableParallel (#11487)
- keep alias for RunnableMap
- update docs to use RunnableParallel and RunnablePassthrough.assign

<!-- Thank you for contributing to LangChain!

Replace this entire comment with:
  - **Description:** a description of the change, 
  - **Issue:** the issue # it fixes (if applicable),
  - **Dependencies:** any dependencies required for this change,
- **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below),
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!

Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.

See contribution guidelines for more information on how to write/run
tests, lint, etc:

https://github.com/langchain-ai/langchain/blob/master/.github/CONTRIBUTING.md

If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in `docs/extras`
directory.

If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
 -->
2023-10-09 11:22:03 +01:00
Eugene Yurtsev
6a10e8ef31
Add documentation to Runnable (#11516) 2023-10-08 08:09:04 +01:00
William FH
eb572f41a6
Add LangSmith Run Chat Loader (#11458) 2023-10-06 17:02:18 -07:00
David Duong
484947c492
Fetch up-to-date attributes for env-pulled kwargs during serialisation of OpenAI classes (#11499) 2023-10-06 22:43:29 +01:00
Leonid Ganeline
c3d2b01adf
docs: integrations/retrievers cleanup (#11388)
fixed several notebooks:
- headers
- formats

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-06 13:40:46 -07:00
Bagatur
5470e730d2
raise openapi import error (#11495) 2023-10-06 12:57:24 -07:00
Erick Friis
29f5f70415
Rename some last hwchase17/langchain links (#11494) 2023-10-06 12:34:30 -07:00
Fabrice Pont
872836c541
feat: add markdown list parser (#11411)
**Description:** add `MarkdownListOutputParser` as a new
`ListOutputParser`
 **Issue:** #11410
2023-10-06 12:25:45 -07:00
Erick Friis
8f50b616c5
Remove optional from vectara source (#11493)
fyi @ofermend

---------

Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
2023-10-06 12:12:44 -07:00
Maciej Dzieżyc
bcd308c368
Fix Open in Colab link for ClearML docs 2 (#11491)
Description: Fixed the Open in Colab link for ClearML docs
Issue: https://github.com/allegroai/clearml/issues/1125
Twitter handle: DziezycMaciej
2023-10-06 12:01:47 -07:00
Bagatur
88ab69c288
mv docs extras (#11399) 2023-10-06 10:09:41 -07:00
Bagatur
53887242a1
bump 310 (#11486) 2023-10-06 09:49:10 -07:00
Bagatur
1bf8ef1a4f
rm brave (#11482) 2023-10-06 07:44:19 -07:00
Jesús Vélez Santiago
a1c7532298
Add async sql record manager and async indexing API (#10726)
- **Description:** Add support for a SQLRecordManager in async
environments. It includes the creation of `RecorManagerAsync` abstract
class.
- **Issue:** None
- **Dependencies:** Optional `aiosqlite`.
- **Tag maintainer:** @nfcampos 
- **Twitter handle:** @jvelezmagic

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2023-10-06 09:38:44 -04:00
Qihui Xie
57ade13b2b
fix llm_inputs duplication problem in intermediate_steps in SQLDatabaseChain (#10279)
Use `.copy()` to fix the bug that the first `llm_inputs` element is
overwritten by the second `llm_inputs` element in `intermediate_steps`.

***Problem description:***
In [line 127](

c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L127C17-L127C17)),
the `llm_inputs` of the sql generation step is appended as the first
element of `intermediate_steps`:
```
            intermediate_steps.append(llm_inputs)  # input: sql generation
```

However, `llm_inputs` is a mutable dict, it is updated in [line
179](https://github.com/langchain-ai/langchain/blob/master/libs/experimental/langchain_experimental/sql/base.py#L179)
for the final answer step:
```
                llm_inputs["input"] = input_text
```
Then, the updated `llm_inputs` is appended as another element of
`intermediate_steps` in [line
180](c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L180)):
```
                intermediate_steps.append(llm_inputs)  # input: final answer
```

As a result, the final `intermediate_steps` returned in [line
189](c732d8fffd/libs/experimental/langchain_experimental/sql/base.py (L189C43-L189C43))
actually contains two same `llm_inputs` elements, i.e., the `llm_inputs`
for the sql generation step overwritten by the one for final answer step
by mistake. Users are not able to get the actual `llm_inputs` for the
sql generation step from `intermediate_steps`

Simply calling `.copy()` when appending `llm_inputs` to
`intermediate_steps` can solve this problem.
2023-10-05 21:32:08 -07:00
Florian
d78f418c0d
Extract abstracts from Pubmed articles, even if they have no extra label (#10245)
### Description
This pull request involves modifications to the extraction method for
abstracts/summaries within the PubMed utility. A condition has been
added to verify the presence of unlabeled abstracts. Now an abstract
will be extracted even if it does not have a subtitle. In addition, the
extraction of the abstract was extended to books.

### Issue
The PubMed utility occasionally returns an empty result when extracting
abstracts from articles, despite the presence of an abstract for the
paper on PubMed. This issue arises due to the varying structure of
articles; some articles follow a "subtitle/label: text" format, while
others do not include subtitles in their abstracts. An example of the
latter case can be found at:
[https://pubmed.ncbi.nlm.nih.gov/37666905/](url)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-05 18:56:46 -07:00
Viktor Zhemchuzhnikov
fd9da60aea
Add async support to SelfQueryRetriever (#10175)
### Description

SelfQueryRetriever is missing async support, so I am adding it.
I also removed deprecated predict_and_parse method usage here, and added
some tests.

### Issue
N/A

### Tag maintainer
Not yet

### Twitter handle
N/A
2023-10-05 18:54:21 -07:00
Theron Tau
35297ca0d3
Add feature for extracting images from pdf and recognizing text from images. (#10653)
**Description**

It is for #10423 that it will be a useful feature if we can extract
images from pdf and recognize text on them. I have implemented it with
`PyPDFLoader`, `PyPDFium2Loader`, `PyPDFDirectoryLoader`,
`PyMuPDFLoader`, `PDFMinerLoader`, and `PDFPlumberLoader`.
[RapidOCR](https://github.com/RapidAI/RapidOCR.git) is used to recognize
text on extracted images. It is time-consuming for ocr so a boolen
parameter `extract_images` is set to control whether to extract and
recognize. I have tested the time usage for each parser on my own laptop
thinkbook 14+ with AMD R7-6800H by unit test and the result is:

| extract_images | PyPDFParser | PDFMinerParser | PyMuPDFParser |
PyPDFium2Parser | PDFPlumberParser |
| ------------- | ------------- | ------------- | ------------- |
------------- | ------------- |
| False | 0.27s | 0.39s | 0.06s | 0.08s | 1.01s |
| True  | 17.01s  | 20.67s | 20.32s | 19,75s | 20.55s |

**Issue**

#10423 

**Dependencies**

rapidocr_onnxruntime in
[RapidOCR](https://github.com/RapidAI/RapidOCR/tree/main)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-05 18:51:59 -07:00
Bagatur
8e3fbc97ca
Add vowpal_wabbit RL chain (#11462) 2023-10-05 18:39:45 -07:00
Haris Wang
f1269830a0
Fix bug in MarkdownHeaderTextSplitter for codeblock (#10262)
- Description: The previous version of the MarkdownHeaderTextSplitter
did not take into account the possibility of '#' appearing within code
blocks, which caused segmentation anomalies in these situations. This PR
has fixed this issue.
  - Issue: 
  - Dependencies: No
  - Tag maintainer: 
  - Twitter handle: 

cc @baskaryan @eyurtsev  @rlancemartin

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-05 18:34:42 -07:00
Eddie Cohen
656d2303f7
add in, nin for pinecone (#10303)
Description: Adds the in and nin comparators for pinecone seen
[here](https://docs.pinecone.io/docs/metadata-filtering#metadata-query-language)

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-10-05 18:31:09 -07:00
Bagatur
a3a2ce623e Revise vowpal_wabbit notebook 2023-10-05 18:18:19 -07:00
Bagatur
8fafa1af91 merge 2023-10-05 18:09:35 -07:00
olgavrou
3b07c0cf3d
RL Chain with VowpalWabbit (#10242)
- Description: This PR adds a new chain `rl_chain.PickBest` for learned
prompt variable injection, detailed description and usage can be found
in the example notebook added. It essentially adds a
[VowpalWabbit](https://github.com/VowpalWabbit/vowpal_wabbit) layer
before the llm call in order to learn or personalize prompt variable
selections.

Most of the code is to make the API simple and provide lots of defaults
and data wrangling that is needed to use Vowpal Wabbit, so that the user
of the chain doesn't have to worry about it.

- Dependencies:
[vowpal-wabbit-next](https://pypi.org/project/vowpal-wabbit-next/),
     - sentence-transformers (already a dep)
     - numpy (already a dep)
  - tagging @ataymano who contributed to this chain
  - Tag maintainer: @baskaryan
  - Twitter handle: @olgavrou


Added example notebook and unit tests
2023-10-05 18:07:22 -07:00
Manikanta5112
56048b909f
added ContentFormatter escape special characters for message content (#10319)
---------

Co-authored-by: Manikanta5112 <42089393+mani5112@users.noreply.github.com>
2023-10-05 18:02:29 -07:00
Leonid Ganeline
d17416ec79
docstrings callbacks (#11456)
Added missed docstrings to the `callbacks/`

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
2023-10-05 17:13:14 -07:00
Ofer Mendelevitch
3c7653bf0f
"source" argument in constructor of Vectara (#11454)
Replace this entire comment with:
- **Description:** minor update to constructor to allow for
specification of "source"
  - **Tag maintainer:** @baskaryan
  - **Twitter handle:** @ofermend
2023-10-05 17:04:14 -07:00