# Support Qdrant filters
Qdrant has an [extensive filtering
system](https://qdrant.tech/documentation/concepts/filtering/) with rich
type support. This PR makes it possible to use the filters in Langchain
by passing an additional param to both the
`similarity_search_with_score` and `similarity_search` methods.
## Who can review?
@dev2049 @hwchase17
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add batching to Qdrant
Several people requested a batching mechanism while uploading data to
Qdrant. It is important, as there are some limits for the maximum size
of the request payload, and without batching implemented in Langchain,
users need to implement it on their own. This PR exposes a new optional
`batch_size` parameter, so all the documents/texts are loaded in batches
of the expected size (64, by default).
The integration tests of Qdrant are extended to cover two cases:
1. Documents are sent in separate batches.
2. All the documents are sent in a single request.
# Add support for Qdrant nested filter
This extends the filter functionality for the Qdrant vectorstore. The
current filter implementation is limited to a single-level metadata
structure; however, Qdrant supports nested metadata filtering. This
extends the functionality for users to maximize the filter functionality
when using Qdrant as the vectorstore.
Reference: https://qdrant.tech/documentation/filtering/#nested-key
---------
Signed-off-by: Aivin V. Solatorio <avsolatorio@gmail.com>
Hello
1) Passing `embedding_function` as a callable seems to be outdated and
the common interface is to pass `Embeddings` instance
2) At the moment `Qdrant.add_texts` is designed to be used with
`embeddings.embed_query`, which is 1) slow 2) causes ambiguity due to 1.
It should be used with `embeddings.embed_documents`
This PR solves both problems and also provides some new tests
This PR updates Qdrant to 1.1.1 and introduces local mode, so there is
no need to spin up the Qdrant server. By that occasion, the Qdrant
example notebooks also got updated, covering more cases and answering
some commonly asked questions. All the Qdrant's integration tests were
switched to local mode, so no Docker container is required to launch
them.
This PR implements a basic metadata filtering mechanism similar to the
ones in Chroma and Pinecone. It still cannot express complex conditions,
as there are no operators, but some users requested to have that feature
available.
This PR:
- Increases `qdrant-client` version to 1.0.4
- Introduces custom content and metadata keys (as requested in #1087)
- Moves all the `QdrantClient` parameters into the method parameters to
simplify code completion
Signed-off-by: Filip Haltmayer <filip.haltmayer@zilliz.com>
Signed-off-by: Frank Liu <frank.liu@zilliz.com>
Co-authored-by: Filip Haltmayer <81822489+filip-halt@users.noreply.github.com>
Co-authored-by: Frank Liu <frank@frankzliu.com>