- Add langchain.llms.GooglePalm for text completion,
- Add langchain.chat_models.ChatGooglePalm for chat completion,
- Add langchain.embeddings.GooglePalmEmbeddings for sentence embeddings,
- Add example field to HumanMessage and AIMessage so that users can feed
in examples into the PaLM Chat API,
- Add system and unit tests.
Note async completion for the Text API is not yet supported and will be
included in a future PR.
Happy for feedback on any aspect of this PR, especially our choice of
adding an example field to Human and AI Message objects to enable
passing example messages to the API.
With longer context and completions, gpt-3.5-turbo and, especially,
gpt-4, will more times than not take > 60seconds to respond.
Based on some other discussions, it seems like this is an increasingly
common problem, especially with summarization tasks.
- https://github.com/hwchase17/langchain/issues/3512
- https://github.com/hwchase17/langchain/issues/3005
OpenAI's max 600s timeout seems excessive, so I settled on 120, but I do
run into generations that take >240 seconds when using large prompts and
completions with GPT-4, so maybe 240 would be a better compromise?
Enum to string conversion handled differently between python 3.9 and
3.11, currently breaking in 3.11 (see #3788). Thanks @peter-brady for
catching this!
This looks like a bug.
Overall by using len instead of token_counter the prompt thinks it has
less context window than it actually does. Because of this it adds fewer
messages. The reduced previous message context makes the agent
repetitive when selecting tasks.
Currently `langchain.agents.agent_toolkits.SQLDatabaseToolkit` has a
field `llm` with type `BaseLLM`. This breaks initialization for some
LLMs. For example, trying to use it with GPT4:
```
from langchain.sql_database import SQLDatabase
from langchain.chat_models import ChatOpenAI
from langchain.agents.agent_toolkits import SQLDatabaseToolkit
db = SQLDatabase.from_uri("some_db_uri")
llm = ChatOpenAI(model_name="gpt-4")
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
# pydantic.error_wrappers.ValidationError: 1 validation error for SQLDatabaseToolkit
# llm
# Can't instantiate abstract class BaseLLM with abstract methods _agenerate, _generate, _llm_type (type=type_error)
```
Seems like much of the rest of the codebase has switched from BaseLLM to
BaseLanguageModel. This PR makes the change for SQLDatabaseToolkit as
well
In the current solution, AgentType and AGENT_TO_CLASS are placed in two
separate files and both manually maintained. This might cause
inconsistency when we update either of them.
— latest —
based on the discussion with hwchase17, we don’t know how to further use
the newly introduced AgentTypeConfig type, so it doesn’t make sense yet
to add it. Instead, it’s better to move the dictionary to another file
to keep the loading.py file clear. The consistency is a good point.
Instead of asserting the consistency during linting, we added a unittest
for consistency check. I think it works as auto unittest is triggered
every time with clear failure notice. (well, force push is possible, but
we all know what we are doing, so let’s show trust. :>)
~~This PR includes~~
- ~~Introduced AgentTypeConfig as the source of truth of all AgentType
related meta data.~~
- ~~Each AgentTypeConfig is a annotated class type which can be used for
annotation in other places.~~
- ~~Each AgentTypeConfig can be easily extended when we have more meta
data needs.~~
- ~~Strong assertion to ensure AgentType and AGENT_TO_CLASS are always
consistent.~~
- ~~Made AGENT_TO_CLASS automatically generated.~~
~~Test Plan:~~
- ~~since this change is focusing on annotation, lint is the major test
focus.~~
- ~~lint, format and test passed on local.~~
I have added a reddit document loader which fetches the text from the
Posts of Subreddits or Reddit users, using the `praw` Python package. I
have also added an example notebook reddit.ipynb in order to guide users
to use this dataloader.
This code was made in format similar to twiiter document loader. I have
run code formating, linting and also checked the code myself for
different scenarios.
This is my first contribution to an open source project and I am really
excited about this. If you want to suggest some improvements in my code,
I will be happy to do it. :)
Co-authored-by: Taaha Bajwa <taaha.s.bajwa@gmail.com>
The character code mismatches occurred when character information was
not included in the response header (In my case, a Japanese web page).
I solved this issue by changing the encoding setting to
apparent_encoding.
This PR makes the `"\n\n"` string with which `StuffDocumentsChain` joins
formatted documents a property so it can be configured. The new
`document_separator` property defaults to `"\n\n"` so the change is
backwards compatible.
This PR includes some minor alignment updates, including:
- metadata object extended to support contractAddress, blockchainType,
and tokenId
- notebook doc better aligned to standard langchain format
- startToken changed from int to str to support multiple hex value types
on the Alchemy API
The updated metadata will look like the below. It's possible for a
single contractAddress to exist across multiple blockchains (e.g.
Ethereum, Polygon, etc.) so it's important to include the
blockchainType.
```
metadata = {"source": self.contract_address,
"blockchain": self.blockchainType,
"tokenId": tokenId}
```
At the moment all content in Confluence is retrieved by default,
including archived content.
Often, this is undesired as the content is not relevant anymore.
**Notes**
Fetching pages by label does not support excluding archived content.
This may lead to unexpected results.
This **partially** addresses
https://github.com/hwchase17/langchain/issues/1524, but it's also useful
for some of our use cases.
This `DocstoreFn` allows to lookup a document given a function that
accepts the `search` string without the need to implement a custom
`Docstore`.
This could be useful when:
* you don't want to implement a `Docstore` just to provide a custom
`search`
* it's expensive to construct an `InMemoryDocstore`/dict
* you retrieve documents from remote sources
* you just want to reuse existing objects
Add other File Utilities, include
- List Directory
- Search for file
- Move
- Copy
- Remove file
Bundle as toolkit
Add a notebook that connects to the Chat Agent, which somewhat supports
multi-arg input tools
Update original read/write files to return the original dir paths and
better handle unsupported file paths.
Add unit tests
Adds a PlayWright web browser toolkit with the following tools:
- NavigateTool (navigate_browser) - navigate to a URL
- NavigateBackTool (previous_page) - wait for an element to appear
- ClickTool (click_element) - click on an element (specified by
selector)
- ExtractTextTool (extract_text) - use beautiful soup to extract text
from the current web page
- ExtractHyperlinksTool (extract_hyperlinks) - use beautiful soup to
extract hyperlinks from the current web page
- GetElementsTool (get_elements) - select elements by CSS selector
- CurrentPageTool (current_page) - get the current page URL
I think the logic of
https://github.com/hwchase17/langchain/pull/3684#pullrequestreview-1405358565
is too confusing.
I prefer this alternative because:
- All `Tool()` implementations by default will be treated the same as
before. No breaking changes.
- Less reliance on pydantic magic
- The decorator (which only is typed as returning a callable) can infer
schema and generate a structured tool
- Either way, the recommended way to create a custom tool is through
inheriting from the base tool
Tradeoffs here:
- No lint-time checking for compatibility
- Differs from JS package
- The signature inference, etc. in the base tool isn't simple
- The `args_schema` is optional
Pros:
- Forwards compatibility retained
- Doesn't break backwards compatibility
- User doesn't have to think about which class to subclass (single base
tool or dynamic `Tool` interface regardless of input)
- No need to change the load_tools, etc. interfaces
Co-authored-by: Hasan Patel <mangafield@gmail.com>
Resolves#3664
Next PR will be to clean up CI to catch this earlier. Triaging this, it
looks like it wasn't caught because pexpect is a `poetry` dependency.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Adding a lazy iteration for document loaders.
Following the plan here:
https://github.com/hwchase17/langchain/pull/2833
Keeping the `load` method as is for backwards compatibility. The `load`
returns a materialized list of documents and downstream users may rely on that
fact.
A new method that returns an iterable is introduced for handling lazy
loading.
---------
Co-authored-by: Zander Chase <130414180+vowelparrot@users.noreply.github.com>
Alternate implementation of #3452 that relies on a generic query
constructor chain and language and then has vector store-specific
translation layer. Still refactoring and updating examples but general
structure is there and seems to work s well as #3452 on exampels
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This PR introduces a Blob data type and a Blob loader interface.
This is the first of a sequence of PRs that follows this proposal:
https://github.com/hwchase17/langchain/pull/2833
The primary goals of these abstraction are:
* Decouple content loading from content parsing code.
* Help duplicated content loading code from document loaders.
* Make lazy loading a default for langchain.
### Summary
Updates the `UnstructuredURLLoader` to include a "elements" mode that
retains additional metadata from `unstructured`. This makes
`UnstructuredURLLoader` consistent with other unstructured loaders,
which also support "elements" mode. Patched mode into the existing
`UnstructuredURLLoader` class instead of inheriting from
`UnstructuredBaseLoader` because it significantly simplified the
implementation.
### Testing
This should still work and show the url in the source for the metadata
```python
from langchain.document_loaders import UnstructuredURLLoader
urls = ["https://www.understandingwar.org/sites/default/files/Russian%20Offensive%20Campaign%20Assessment%2C%20April%2011%2C%202023.pdf"]
loader = UnstructuredURLLoader(urls=urls, headers={"Accept": "application/json"}, strategy="fast")
docs = loader.load()
print(docs[0].page_content[:1000])
docs[0].metadata
```
This should now work and show additional metadata from `unstructured`.
This should still work and show the url in the source for the metadata
```python
from langchain.document_loaders import UnstructuredURLLoader
urls = ["https://www.understandingwar.org/sites/default/files/Russian%20Offensive%20Campaign%20Assessment%2C%20April%2011%2C%202023.pdf"]
loader = UnstructuredURLLoader(urls=urls, headers={"Accept": "application/json"}, strategy="fast", mode="elements")
docs = loader.load()
print(docs[0].page_content[:1000])
docs[0].metadata
```
This PR
* Adds `clear` method for `BaseCache` and implements it for various
caches
* Adds the default `init_func=None` and fixes gptcache integtest
* Since right now integtest is not running in CI, I've verified the
changes by running `docs/modules/models/llms/examples/llm_caching.ipynb`
(until proper e2e integtest is done in CI)
This fixes the error when calling AzureOpenAI of gpt-35-turbo model.
The error is:
InvalidRequestError: logprobs, best_of and echo parameters are not
available on gpt-35-turbo model. Please remove the parameter and try
again. For more details, see
https://go.microsoft.com/fwlink/?linkid=2227346.
## Background
fixes#2695
## Changes
The `add_text` method uses the internal embedding function if one was
passes to the `Weaviate` constructor.
NOTE: the latest merge on the `Weaviate` class made the specification of
a `weaviate_api_key` mandatory which might not be desirable for all
users and connection methods (for example weaviate also support Embedded
Weaviate which I am happy to add support to here if people think it's
desirable). I wrapped the fetching of the api key into a try catch in
order to allow the `weaviate_api_key` to be unspecified. Do let me know
if this is unsatisfactory.
## Test Plan
added test for `add_texts` method.
It makes sense to use `arxiv` as another source of the documents for
downloading.
- Added the `arxiv` document_loader, based on the
`utilities/arxiv.py:ArxivAPIWrapper`
- added tests
- added an example notebook
- sorted `__all__` in `__init__.py` (otherwise it is hard to find a
class in the very long list)
Tools for Bing, DDG and Google weren't consistent even though the
underlying implementations were.
All three services now have the same tools and implementations to easily
switch and experiment when building chains.
The following error gets returned when trying to launch
langchain-server:
ERROR: The Compose file
'/opt/homebrew/lib/python3.11/site-packages/langchain/docker-compose.yaml'
is invalid because:
services.langchain-db.expose is invalid: should be of the format
'PORT[/PROTOCOL]'
Solution:
Change line 28 from - 5432:5432 to - 5432
One of our users noticed a bug when calling streaming models. This is
because those models return an iterator. So, I've updated the Replicate
`_call` code to join together the output. The other advantage of this
fix is that if you requested multiple outputs you would get them all –
previously I was just returning output[0].
I also adjusted the demo docs to use dolly, because we're featuring that
model right now and it's always hot, so people won't have to wait for
the model to boot up.
The error that this fixes:
```
> llm = Replicate(model=“replicate/flan-t5-xl:eec2f71c986dfa3b7a5d842d22e1130550f015720966bec48beaae059b19ef4c”)
> llm(“hello”)
> Traceback (most recent call last):
File "/Users/charlieholtz/workspace/dev/python/main.py", line 15, in <module>
print(llm(prompt))
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 246, in __call__
return self.generate([prompt], stop=stop).generations[0][0].text
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 140, in generate
raise e
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 137, in generate
output = self._generate(prompts, stop=stop)
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 324, in _generate
text = self._call(prompt, stop=stop)
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/replicate.py", line 108, in _call
return outputs[0]
TypeError: 'generator' object is not subscriptable
```
- added a few missing annotation for complex local variables.
- auto formatted.
- I also went through all other files in agent directory. no seeing any
other missing piece. (there are several prompt strings not annotated,
but I think it’s trivial. Also adding annotation will make it harder to
read in terms of indents.) Anyway, I think this is the last PR in
agent/annotation.
The sentence transformers was a dup of the HF one.
This is a breaking change (model_name vs. model) for anyone using
`SentenceTransformerEmbeddings(model="some/nondefault/model")`, but
since it was landed only this week it seems better to do this now rather
than doing a wrapper.
Often an LLM will output a requests tool input argument surrounded by
single quotes. This triggers an exception in the requests library. Here,
we add a simple clean url function that strips any leading and trailing
single and double quotes before passing the URL to the underlying
requests library.
Co-authored-by: James Brotchie <brotchie@google.com>
Ran into this issue In vectorstores/redis.py when trying to use the
AutoGPT agent with redis vector store. The error I received was
`
langchain/experimental/autonomous_agents/autogpt/agent.py", line 134, in
run
self.memory.add_documents([Document(page_content=memory_to_add)])
AttributeError: 'RedisVectorStoreRetriever' object has no attribute
'add_documents'
`
Added the needed function to the class RedisVectorStoreRetriever which
did not have the functionality like the base VectorStoreRetriever in
vectorstores/base.py that, for example, vectorstores/faiss.py has
The Pandas agent fails to pass callback_manager forward, making it
impossible to use custom callbacks with it. Fix that.
Co-authored-by: Sami Liedes <sami.liedes@rocket-science.ch>
Improved `arxiv/tool.py` by adding more specific information to the
`description`. It would help with selecting `arxiv` tool between other
tools.
Improved `arxiv.ipynb` with more useful descriptions.
Apart from being unnecessary, postgresql is run on its default port,
which means that the langchain-server will fail to start if there is
already a postgresql server running on the host. This is obviously less
than ideal.
(Yeah, I don't understand why "expose" is the syntax that does not
expose the ports to the host...)
Tested by running langchain-server and trying out debugging on a host
that already has postgresql bound to the port 5432.
Co-authored-by: Sami Liedes <sami.liedes@rocket-science.ch>
So, this is basically fixing the same things as #1517 but for GCS.
### Problem
When loading GCS Objects with `/` in the object key (eg.
folder/some-document.txt) using `GCSFileLoader`, the objects are
downloaded into a temporary directory and saved as a file.
This errors out when the parent directory does not exist within the
temporary directory.
### What this pr does
Creates parent directories based on object key.
This also works with deeply nested keys:
folder/subfolder/some-document.txt
Fix for: [Changed regex to cover new line before action
serious.](https://github.com/hwchase17/langchain/issues/3365)
---
This PR fixes the issue where `ValueError: Could not parse LLM output:`
was thrown on seems to be valid input.
Changed regex to cover new lines before action serious (after the
keywords "Action:" and "Action Input:").
regex101: https://regex101.com/r/CXl1kB/1
---------
Co-authored-by: msarskus <msarskus@cisco.com>
Rewrite of #3368
Mainly an issue for when people are just getting started, but still nice
to not throw an error if the number of docs is < k.
Add a little decorator utility to block mutually exclusive keyword
arguments
At present, the method of generating `point` in qdrant is to use random
`uuid`. The problem with this approach is that even documents with the
same content will be inserted repeatedly instead of updated. Using `md5`
as the `ID` of `point` to insert text can achieve true `update or
insert`.
Co-authored-by: mayue <mayue05@qiyi.com>
This fixes the below mentioned issue. Instead of simply passing the text
to `tensorflow_hub`, we convert it to a list and then pass it.
https://github.com/hwchase17/langchain/issues/3282
Co-authored-by: Prakhar Agarwal <i.prakhar-agarwal@devrev.ai>
First PR, let me know if this needs anything like unit tests,
reformatting, etc. Seemed pretty straightforward to implement. Only
hitch was that mmap needs to be disabled when loading LoRAs or else you
segfault.
This PR adds support for providing a Weaviate API Key to the VectorStore
methods `from_documents` and `from_texts`. With this addition, users can
authenticate to Weaviate and make requests to private Weaviate servers
when using these methods.
## Motivation
Currently, LangChain's VectorStore methods do not provide a way to
authenticate to Weaviate. This limits the functionality of the library
and makes it more difficult for users to take advantage of Weaviate's
features.
This PR addresses this issue by adding support for providing a Weaviate
API Key as extra parameter used in the `from_texts` method.
## Contributing Guidelines
I have read the [contributing
guidelines](72b7d76d79/.github/CONTRIBUTING.md)
and the PR code passes the following tests:
- [x] make format
- [x] make lint
- [x] make coverage
- [x] make test
### Background
Continuing to implement all the interface methods defined by the
`VectorStore` class. This PR pertains to implementation of the
`max_marginal_relevance_search_by_vector` method.
### Changes
- a `max_marginal_relevance_search_by_vector` method implementation has
been added in `weaviate.py`
- tests have been added to the the new method
- vcr cassettes have been added for the weaviate tests
### Test Plan
Added tests for the `max_marginal_relevance_search_by_vector`
implementation
### Change Safety
- [x] I have added tests to cover my changes
kwargs shoud be passed into cls so that opensearch client can be
properly initlized in __init__(). Otherwise logic like below will not
work. as auth will not be passed into __init__
```python
docsearch = OpenSearchVectorSearch.from_documents(docs, embeddings, opensearch_url="http://localhost:9200")
query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)
```
Co-authored-by: EC2 Default User <ec2-user@ip-172-31-28-97.ec2.internal>
- Proactively raise error if a tool subclasses BaseTool, defines its
own schema, but fails to add the type-hints
- fix the auto-inferred schema of the decorator to strip the
unneeded virtual kwargs from the schema dict
Helps avoid silent instances of #3297
Improvements
* set default num_workers for ingestion to 0
* upgraded notebooks for avoiding dataset creation ambiguity
* added `force_delete_dataset_by_path`
* bumped deeplake to 3.3.0
* creds arg passing to deeplake object that would allow custom S3
Notes
* please double check if poetry is not messed up (thanks!)
Asks
* Would be great to create a shared slack channel for quick questions
---------
Co-authored-by: Davit Buniatyan <d@activeloop.ai>
This PR addresses several improvements:
- Previously it was not possible to load spaces of more than 100 pages.
The `limit` was being used both as an overall page limit *and* as a per
request pagination limit. This, in combination with the fact that
atlassian seem to use a server-side hard limit of 100 when page content
is expanded, meant it wasn't possible to download >100 pages. Now
`limit` is used *only* as a per-request pagination limit and `max_pages`
is introduced as the way to limit the total number of pages returned by
the paginator.
- Document metadata now includes `source` (the source url), making it
compatible with `RetrievalQAWithSourcesChain`.
- It is now possible to include inline and footer comments.
- It is now possible to pass `verify_ssl=False` and other parameters to
the confluence object for use cases that require it.
Small improvements for the YouTube loader:
a) use the YouTube API permission scope instead of Google Drive
b) bugfix: allow transcript loading for single videos
c) an additional parameter "continue_on_failure" for cases when videos
in a playlist do not have transcription enabled.
d) support automated translation for all languages, if available.
---------
Co-authored-by: Johann-Peter Hartmann <johann-peter.hartmann@mayflower.de>
This pull request adds a ChatGPT document loader to the document loaders
module in `langchain/document_loaders/chatgpt.py`. Additionally, it
includes an example Jupyter notebook in
`docs/modules/indexes/document_loaders/examples/chatgpt_loader.ipynb`
which uses fake sample data based on the original structure of the
`conversations.json` file.
The following files were added/modified:
- `langchain/document_loaders/__init__.py`
- `langchain/document_loaders/chatgpt.py`
- `docs/modules/indexes/document_loaders/examples/chatgpt_loader.ipynb`
-
`docs/modules/indexes/document_loaders/examples/example_data/fake_conversations.json`
This pull request was made in response to the recent release of ChatGPT
data exports by email:
https://help.openai.com/en/articles/7260999-how-do-i-export-my-chatgpt-history
Hi there!
I'm excited to open this PR to add support for using a fully Postgres
syntax compatible database 'AnalyticDB' as a vector.
As AnalyticDB has been proved can be used with AutoGPT,
ChatGPT-Retrieve-Plugin, and LLama-Index, I think it is also good for
you.
AnalyticDB is a distributed Alibaba Cloud-Native vector database. It
works better when data comes to large scale. The PR includes:
- [x] A new memory: AnalyticDBVector
- [x] A suite of integration tests verifies the AnalyticDB integration
I have read your [contributing
guidelines](72b7d76d79/.github/CONTRIBUTING.md).
And I have passed the tests below
- [x] make format
- [x] make lint
- [x] make coverage
- [x] make test
handles error when youtube video has transcripts disabled
```
youtube_transcript_api._errors.TranscriptsDisabled:
Could not retrieve a transcript for the video https://www.youtube.com/watch?v=<URL> This is most likely caused by:
Subtitles are disabled for this video
If you are sure that the described cause is not responsible for this error and that a transcript should be retrievable, please create an issue at https://github.com/jdepoix/youtube-transcript-api/issues. Please add which version of youtube_transcript_api you are using and provide the information needed to replicate the error. Also make sure that there are no open issues which already describe your problem!
```
Signed-off-by: Sertac Ozercan <sozercan@gmail.com>
### Description
Add Support for Lucene Filter. When you specify a Lucene filter for a
k-NN search, the Lucene algorithm decides whether to perform an exact
k-NN search with pre-filtering or an approximate search with modified
post-filtering. This filter is supported only for approximate search
with the indexes that are created using `lucene` engine.
OpenSearch Documentation -
https://opensearch.org/docs/latest/search-plugins/knn/filter-search-knn/#lucene-k-nn-filter-implementation
Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
Make it possible to control the HuggingFaceEmbeddings and HuggingFaceInstructEmbeddings client model kwargs. Additionally, the cache folder was added for HuggingFaceInstructEmbedding as the client inherits from SentenceTransformer (client of HuggingFaceEmbeddings).
It can be useful, especially to control the client device, as it will be defaulted to GPU by sentence_transformers if there is any.
---------
Co-authored-by: Yoann Poupart <66315201+Xmaster6y@users.noreply.github.com>
Currently `langchain.tools.sql_database.tool.QueryCheckerTool` has a
field `llm` with type `BaseLLM`. This breaks initialization for some
LLMs. For example, trying to use it with GPT4:
```python
from langchain.sql_database import SQLDatabase
from langchain.chat_models import ChatOpenAI
from langchain.tools.sql_database.tool import QueryCheckerTool
db = SQLDatabase.from_uri("some_db_uri")
llm = ChatOpenAI(model_name="gpt-4")
tool = QueryCheckerTool(db=db, llm=llm)
# pydantic.error_wrappers.ValidationError: 1 validation error for QueryCheckerTool
# llm
# Can't instantiate abstract class BaseLLM with abstract methods _agenerate, _generate, _llm_type (type=type_error)
```
Seems like much of the rest of the codebase has switched from `BaseLLM`
to `BaseLanguageModel`. This PR makes the change for QueryCheckerTool as
well
Co-authored-by: Zachary Jones <zjones@zetaglobal.com>
### Summary
Adds a loader for rich text files. Requires `unstructured>=0.5.12`.
### Testing
The following test uses the example RTF file from the [`unstructured`
repo](https://github.com/Unstructured-IO/unstructured/tree/main/example-docs).
```python
from langchain.document_loaders import UnstructuredRTFLoader
loader = UnstructuredRTFLoader("fake-doc.rtf", mode="elements")
docs = loader.load()
docs[0].page_content
```
While we work on solidifying the memory interfaces, handle common chat
history formats.
This may break linting on anyone who has been passing in
`get_chat_history` .
Somewhat handles #3077
Alternative to #3078 that updates the typing
First cut of a supabase vectorstore loosely patterned on the langchainjs
equivalent. Doesn't support async operations which is a limitation of
the supabase python client.
---------
Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
Separated the deployment from model to support Azure OpenAI Embeddings
properly.
Also removed the deprecated document_model_name and query_model_name
attributes.
- Permit the specification of a `root_dir` to the read/write file tools
to specify a working directory
- Add validation for attempts to read/write outside the directory (e.g.,
through `../../` or symlinks or `/abs/path`'s that don't lie in the
correct path)
- Add some tests for all
One question is whether we should make a default root directory for
these? tradeoffs either way
This occurred when redis_url was not passed as a parameter even though a
REDIS_URL env variable was present.
This occurred for all methods that eventually called any of:
(from_texts, drop_index, from_existing_index) - i.e. virtually all
methods in the class.
This fixes it
`langchain.prompts.PromptTemplate` and
`langchain.prompts.FewShotPromptTemplate` do not validate
`input_variables` when initialized as `jinja2` template.
```python
# Using langchain v0.0.144
template = """"\
Your variable: {{ foo }}
{% if bar %}
You just set bar boolean variable to true
{% endif %}
"""
# Missing variable, should raise ValueError
prompt_template = PromptTemplate(template=template,
input_variables=["bar"],
template_format="jinja2",
validate_template=True)
# Extra variable, should raise ValueError
prompt_template = PromptTemplate(template=template,
input_variables=["bar", "foo", "extra", "thing"],
template_format="jinja2",
validate_template=True)
```
### Summary
Updates the `UnstructuredURLLoader` to support passing in headers for
non HTML content types. While this update maintains backward
compatibility with older versions of `unstructured`, we strongly
recommended upgrading to `unstructured>=0.5.13` if you are using the
`UnstructuredURLLoader`.
### Testing
#### With headers
```python
from langchain.document_loaders import UnstructuredURLLoader
urls = ["https://www.understandingwar.org/sites/default/files/Russian%20Offensive%20Campaign%20Assessment%2C%20April%2011%2C%202023.pdf"]
loader = UnstructuredURLLoader(urls=urls, headers={"Accept": "application/json"}, strategy="fast")
docs = loader.load()
print(docs[0].page_content[:1000])
```
#### Without headers
```python
from langchain.document_loaders import UnstructuredURLLoader
urls = ["https://www.understandingwar.org/sites/default/files/Russian%20Offensive%20Campaign%20Assessment%2C%20April%2011%2C%202023.pdf"]
loader = UnstructuredURLLoader(urls=urls, strategy="fast")
docs = loader.load()
print(docs[0].page_content[:1000])
```
---------
Co-authored-by: Zander Chase <130414180+vowelparrot@users.noreply.github.com>
Add DocumentTransformer abstraction so that in #2915 we don't have to
wrap TextSplitter and RedundantEmbeddingFilter (neither of which uses
the query) in the contextual doc compression abstractions. with this
change, doc filter (doc extractor, whatever we call it) would look
something like
```python
class BaseDocumentFilter(BaseDocumentTransformer[_RetrievedDocument], ABC):
@abstractmethod
def filter(self, documents: List[_RetrievedDocument], query: str) -> List[_RetrievedDocument]:
...
def transform_documents(self, documents: List[_RetrievedDocument], query: Optional[str] = None, **kwargs: Any) -> List[_RetrievedDocument]:
if query is None:
raise ValueError("Must pass in non-null query to DocumentFilter")
return self.filter(documents, query)
```
- Remove dynamic model creation in the `args()` property. _Only infer
for the decorator (and add an argument to NOT infer if someone wishes to
only pass as a string)_
- Update the validation example to make it less likely to be
misinterpreted as a "safe" way to run a repl
There is one example of "Multi-argument tools" in the custom_tools.ipynb
from yesterday, but we could add more. The output parsing for the base
MRKL agent hasn't been adapted to handle structured args at this point
in time
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
## Background
This PR fixes this error when there are special tokens when querying the
chain:
```
Encountered text corresponding to disallowed special token '<|endofprompt|>'.
If you want this text to be encoded as a special token, pass it to `allowed_special`, e.g. `allowed_special={'<|endofprompt|>', ...}`.
If you want this text to be encoded as normal text, disable the check for this token by passing `disallowed_special=(enc.special_tokens_set - {'<|endofprompt|>'})`.
To disable this check for all special tokens, pass `disallowed_special=()`.
```
Refer to the code snippet below, it breaks in the chain line.
```
chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(openai_api_key=OPENAI_API_KEY),
retriever=vectorstore.as_retriever(),
qa_prompt=prompt,
condense_question_prompt=condense_prompt,
)
answer = chain({"question": f"{question}"})
```
However `ChatOpenAI` class is not accepting `allowed_special` and
`disallowed_special` at the moment so they cannot be passed to the
`encode()` in `get_num_tokens` method to avoid the errors.
## Change
- Add `allowed_special` and `disallowed_special` attributes to
`BaseOpenAI` class.
- Pass in `allowed_special` and `disallowed_special` as arguments of
`encode()` in tiktoken.
---------
Co-authored-by: samcarmen <“carmen.samkahman@gmail.com”>
I made a couple of improvements to the Comet tracker:
* The Comet project name is configurable in various ways (code,
environment variable or file), having a default value in code meant that
users couldn't set the project name in an environment variable or in a
file.
* I added error catching when the `flush_tracker` is called in order to
avoid crashing the whole process. Instead we are gonna display a warning
or error log message (`extra={"show_traceback": True}` is an internal
convention to force the display of the traceback when using our own
logger).
I decided to add the error catching after seeing the following error in
the third example of the notebook:
```
COMET ERROR: Failed to export agent or LLM to Comet
Traceback (most recent call last):
File "/home/lothiraldan/project/cometml/langchain/langchain/callbacks/comet_ml_callback.py", line 484, in _log_model
langchain_asset.save(langchain_asset_path)
File "/home/lothiraldan/project/cometml/langchain/langchain/agents/agent.py", line 591, in save
raise ValueError(
ValueError: Saving not supported for agent executors. If you are trying to save the agent, please use the `.save_agent(...)`
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/lothiraldan/project/cometml/langchain/langchain/callbacks/comet_ml_callback.py", line 449, in flush_tracker
self._log_model(langchain_asset)
File "/home/lothiraldan/project/cometml/langchain/langchain/callbacks/comet_ml_callback.py", line 488, in _log_model
langchain_asset.save_agent(langchain_asset_path)
File "/home/lothiraldan/project/cometml/langchain/langchain/agents/agent.py", line 599, in save_agent
return self.agent.save(file_path)
File "/home/lothiraldan/project/cometml/langchain/langchain/agents/agent.py", line 145, in save
agent_dict = self.dict()
File "/home/lothiraldan/project/cometml/langchain/langchain/agents/agent.py", line 119, in dict
_dict = super().dict()
File "pydantic/main.py", line 449, in pydantic.main.BaseModel.dict
File "pydantic/main.py", line 868, in _iter
File "pydantic/main.py", line 743, in pydantic.main.BaseModel._get_value
File "/home/lothiraldan/project/cometml/langchain/langchain/schema.py", line 381, in dict
output_parser_dict["_type"] = self._type
File "/home/lothiraldan/project/cometml/langchain/langchain/schema.py", line 376, in _type
raise NotImplementedError
NotImplementedError
```
I still need to investigate and try to fix it, it looks related to
saving an agent to a file.
Sometimes the LLM response (generated code) tends to miss the ending
ticks "```". Therefore causing the text parsing to fail due to not
enough values to unpack.
The 2 extra `_` don't add value and can cause errors. Suggest to simply
update the `_, action, _` to just `action` then with index.
Fixes issue #3057
This pull request addresses the need to share a single `chromadb.Client`
instance across multiple instances of the `Chroma` class. By
implementing a shared client, we can maintain consistency and reduce
resource usage when multiple instances of the `Chroma` classes are
created. This is especially relevant in a web app, where having multiple
`Chroma` instances with a `persist_directory` leads to these clients not
being synced.
This PR implements this option while keeping the rest of the
architecture unchanged.
**Changes:**
1. Add a client attribute to the `Chroma` class to store the shared
`chromadb.Client` instance.
2. Modify the `from_documents` method to accept an optional client
parameter.
3. Update the `from_documents` method to use the shared client if
provided or create a new client if not provided.
Let me know if anything needs to be modified - thanks again for your
work on this incredible repo
This PR extends upon @jzluo 's PR #2748 which addressed dialect-specific
issues with SQL prompts, and adds a prompt that uses backticks for
column names when querying BigQuery. See [GoogleSQL quoted
identifiers](https://cloud.google.com/bigquery/docs/reference/standard-sql/lexical#quoted_identifiers).
Additionally, the SQL agent currently uses a generic prompt. Not sure
how best to adopt the same optional dialect-specific prompts as above,
but will consider making an issue and PR for that too. See
[langchain/agents/agent_toolkits/sql/prompt.py](langchain/agents/agent_toolkits/sql/prompt.py).
### Description
Pass kwargs to get OpenSearch client from `from_texts` function
### Issues Resolved
https://github.com/hwchase17/langchain/issues/2819
Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
`langchain.prompts.PromptTemplate` is unable to infer `input_variables`
from jinja2 template.
```python
# Using langchain v0.0.141
template_string = """\
Hello world
Your variable: {{ var }}
{# This will not get rendered #}
{% if verbose %}
Congrats! You just turned on verbose mode and got extra messages!
{% endif %}
"""
template = PromptTemplate.from_template(template_string, template_format="jinja2")
print(template.input_variables) # Output ['# This will not get rendered #', '% endif %', '% if verbose %']
```
---------
Co-authored-by: engkheng <ongengkheng929@example.com>