Commit Graph

9734 Commits

Author SHA1 Message Date
Stefano Lottini
328d0c99f2
community[minor]: Add support for metadata indexing policy in Cassandra vector store (#22548)
This PR adds a constructor `metadata_indexing` parameter to the
Cassandra vector store to allow optional fine-tuning of which fields of
the metadata are to be indexed.

This is a feature supported by the underlying CassIO library. Indexing
mode of "all", "none" or deny- and allow-list based choices are
available.

The rationale is, in some cases it's advisable to programmatically
exclude some portions of the metadata from the index if one knows in
advance they won't ever be used at search-time. this keeps the index
more lightweight and performant and avoids limitations on the length of
_indexed_ strings.

I added a integration test of the feature. I also added the possibility
of running the integration test with Cassandra on an arbitrary IP
address (e.g. Dockerized), via
`CASSANDRA_CONTACT_POINTS=10.1.1.5,10.1.1.6 poetry run pytest [...]` or
similar.

While I was at it, I added a line to the `.gitignore` since the mypy
_test_ cache was not ignored yet.

My X (Twitter) handle: @rsprrs.
2024-06-05 11:23:26 -04:00
Emilien Chauvet
c3d4126eb1
community[minor]: add user agent for web scraping loaders (#22480)
**Description:** This PR adds a `USER_AGENT` env variable that is to be
used for web scraping. It creates a util to get that user agent and uses
it in the classes used for scraping in [this piece of
doc](https://python.langchain.com/v0.1/docs/use_cases/web_scraping/).
Identifying your scraper is considered a good politeness practice, this
PR aims at easing it.
**Issue:** `None`
**Dependencies:** `None`
**Twitter handle:** `None`
2024-06-05 15:20:34 +00:00
Philippe PRADOS
8250c177de
community[minor]: Add native async support to SQLChatMessageHistory (#22065)
# package community: Fix SQLChatMessageHistory

## Description
Here is a rewrite of `SQLChatMessageHistory` to properly implement the
asynchronous approach. The code circumvents [issue
22021](https://github.com/langchain-ai/langchain/issues/22021) by
accepting a synchronous call to `def add_messages()` in an asynchronous
scenario. This bypasses the bug.

For the same reasons as in [PR
22](https://github.com/langchain-ai/langchain-postgres/pull/32) of
`langchain-postgres`, we use a lazy strategy for table creation. Indeed,
the promise of the constructor cannot be fulfilled without this. It is
not possible to invoke a synchronous call in a constructor. We
compensate for this by waiting for the next asynchronous method call to
create the table.

The goal of the `PostgresChatMessageHistory` class (in
`langchain-postgres`) is, among other things, to be able to recycle
database connections. The implementation of the class is problematic, as
we have demonstrated in [issue
22021](https://github.com/langchain-ai/langchain/issues/22021).

Our new implementation of `SQLChatMessageHistory` achieves this by using
a singleton of type (`Async`)`Engine` for the database connection. The
connection pool is managed by this singleton, and the code is then
reentrant.

We also accept the type `str` (optionally complemented by `async_mode`.
I know you don't like this much, but it's the only way to allow an
asynchronous connection string).

In order to unify the different classes handling database connections,
we have renamed `connection_string` to `connection`, and `Session` to
`session_maker`.

Now, a single transaction is used to add a list of messages. Thus, a
crash during this write operation will not leave the database in an
unstable state with a partially added message list. This makes the code
resilient.

We believe that the `PostgresChatMessageHistory` class is no longer
necessary and can be replaced by:
```
PostgresChatMessageHistory = SQLChatMessageHistory
```
This also fixes the bug.


## Issue
- [issue 22021](https://github.com/langchain-ai/langchain/issues/22021)
  - Bug in _exit_history()
  - Bugs in PostgresChatMessageHistory and sync usage
  - Bugs in PostgresChatMessageHistory and async usage
- [issue
36](https://github.com/langchain-ai/langchain-postgres/issues/36)
 ## Twitter handle:
pprados

## Tests
- libs/community/tests/unit_tests/chat_message_histories/test_sql.py
(add async test)

@baskaryan, @eyurtsev or @hwchase17 can you check this PR ?
And, I've been waiting a long time for validation from other PRs. Can
you take a look?
- [PR 32](https://github.com/langchain-ai/langchain-postgres/pull/32)
- [PR 15575](https://github.com/langchain-ai/langchain/pull/15575)
- [PR 13200](https://github.com/langchain-ai/langchain/pull/13200)

---------

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
2024-06-05 15:10:38 +00:00
Vincent Min
59bef31997
community[minor]: Improve InMemoryVectorStore with ability to persist to disk and filter on metadata. (#22186)
- **Description:** The InMemoryVectorStore is a nice and simple vector
store implementation for quick development and debugging. The current
implementation is quite limited in its functionalities. This PR extends
the functionalities by adding utility function to persist the vector
store to a json file and to load it from a json file. We choose the json
file format because it allows inspection of the database contents in a
text editor, which is great for debugging. Furthermore, it adds a
`filter` keyword that can be used to filter out documents on their
`page_content` or `metadata`.
- **Issue:** -
- **Dependencies:** -
- **Twitter handle:** @Vincent_Min
2024-06-05 10:40:34 -04:00
Christophe Bornet
c34ad8c163
core[patch]: Improve VectorStore API doc (#22547) 2024-06-05 10:23:44 -04:00
maang-h
89128b7a49
community[patch]: add detailed paragraph and example for BaichuanTextEmbeddings (#22031)
- **Description:** add detailed paragraph and example for
BaichuanTextEmbeddings
   - **Issue:** the issue #21983
2024-06-05 10:18:11 -04:00
Anthony Bernabeu
4e676a63b8
community[minor]: Added filter search for LanceDB (#22461)
- [ ] **community**: "vectorstore: added filtering support for LanceDB
vector store"

- [ ] **This PR adds filtering capabilities to LanceDB**:
- **Description:** In LanceDB filtering can be applied when searching
for data into the vectorstore. It is using the SQL language as mentioned
in the LanceDB documentation.
    - **Issue:** #18235 
    - **Dependencies:** No

- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.

- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
2024-06-05 09:33:54 -04:00
Erick Friis
4050d6ea2b
huggingface: remove text-generation dep (#22543) 2024-06-05 12:13:40 +00:00
Erick Friis
a6fc74f379
ai21: fix core version (#22544) 2024-06-05 08:09:19 -04:00
Asaf Joseph Gardin
75cba742e5
ai21: fix ai21 unittests (#22526)
Co-authored-by: Asaf Gardin <asafg@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
2024-06-05 08:00:42 -04:00
Erick Friis
58192d617f
community: fix huggingface deprecations (#22522) 2024-06-05 04:13:13 +00:00
Jacob Lee
1e748a6d40
docs[patch]: Adds links to deprecations page (#22514)
@baskaryan
2024-06-04 16:19:32 -07:00
William FH
91fed3ace7
[Docs] Structured output Keywords (#22511) 2024-06-04 20:56:05 +00:00
Christophe Bornet
8ba868d3b0
core[patch]: Add similarity_score_threshold to VectorStore search types (#22477) 2024-06-04 13:43:55 -07:00
Eugene Yurtsev
9120cf5df2
core[patch]: Deduplicate of callback handlers in merge_configs (#22478)
This PR adds deduplication of callback handlers in merge_configs.

Fix for this issue:
https://github.com/langchain-ai/langchain/issues/22227

The issue appears when the code is:

1) running python >=3.11
2) invokes a runnable from within a runnable
3) binds the callbacks to the child runnable from the parent runnable
using with_config

In this case, the same callbacks end up appearing twice: (1) the first
time from with_config, (2) the second time with langchain automatically
propagating them on behalf of the user.


Prior to this PR this will emit duplicate events:

```python
@tool
async def get_items(question: str, callbacks: Callbacks):  # <--- Accept callbacks
    """Ask question"""
    template = ChatPromptTemplate.from_messages(
        [
            (
                "human",
                "'{question}"
            )
        ]
    )
    chain = template | chat_model.with_config(
        {
            "callbacks": callbacks,  # <-- Propagate callbacks
        }
    )
    return await chain.ainvoke({"question": question})
```

Prior to this PR this will work work correctly (no duplicate events):

```python
@tool
async def get_items(question: str, callbacks: Callbacks):  # <--- Accept callbacks
    """Ask question"""
    template = ChatPromptTemplate.from_messages(
        [
            (
                "human",
                "'{question}"
            )
        ]
    )
    chain = template | chat_model
    return await chain.ainvoke({"question": question}, {"callbacks": callbacks})
```

This will also work (as long as the user is using python >= 3.11) -- as
langchain will automatically propagate callbacks

```python
@tool
async def get_items(question: str,):  
    """Ask question"""
    template = ChatPromptTemplate.from_messages(
        [
            (
                "human",
                "'{question}"
            )
        ]
    )
    chain = template | chat_model
    return await chain.ainvoke({"question": question})
```
2024-06-04 16:19:00 -04:00
Jacob Lee
64dbc52cae
docs[patch]: Update quickstart tutorial (#22504)
Mentions LCEL more, hopefully flags it to more people as a simple
entrypoint

@baskaryan @hwchase17
2024-06-04 13:04:56 -07:00
Ofer Mendelevitch
ad502e8d50
community[minor]: Vectara Integration Update - Streaming, FCS, Chat, updates to documentation and example notebooks (#21334)
Thank you for contributing to LangChain!

**Description:** update to the Vectara / Langchain integration to
integrate new Vectara capabilities:
- Full RAG implemented as a Runnable with as_rag()
- Vectara chat supported with as_chat()
- Both support streaming response
- Updated documentation and example notebook to reflect all the changes
- Updated Vectara templates

**Twitter handle:** ofermend

**Add tests and docs**: no new tests or docs, but updated both existing
tests and existing docs
2024-06-04 12:57:28 -07:00
Bagatur
cb183a9bf1
docs: update anthropic chat model (#22483)
Related to #22296

And update anthropic to accept base_url
2024-06-04 12:42:06 -07:00
Erick Friis
d700ce8545
robocorp: typo (#22509) 2024-06-04 15:33:38 -04:00
Erick Friis
39fd44579a
robocorp: release 0.0.9.post1 (#22507) 2024-06-04 15:32:30 -04:00
Erick Friis
339e3b7f55
ai21: release 0.1.6 (#22508) 2024-06-04 15:31:23 -04:00
ccurme
3c53cea760
together, upstage: bump minimum langchain-openai version (#22505) 2024-06-04 15:20:41 -04:00
Erick Friis
c438b5b78e
docs: fix api ref link generation (#22438)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-04 12:09:22 -07:00
Bagatur
efcb04f84b
mongodb[patch]: Release 0.1.6 (#22501) 2024-06-04 12:01:37 -07:00
Bagatur
222b1ba112
groq[patch]: Release 0.1.5 (#22500) 2024-06-04 12:01:17 -07:00
Bagatur
f021be510e
milvus[patch]: Release 0.1.1 (#22499) 2024-06-04 12:00:53 -07:00
Bagatur
64d68c17cd
upstage[patch]: Release 0.1.6 (#22498) 2024-06-04 11:58:44 -07:00
Bagatur
48fba40fce
experimental[patch]: Release 0.0.60 (#22497) 2024-06-04 11:56:42 -07:00
Bagatur
e60f88ccdd
community[patch]: Release 0.2.2 (#22496) 2024-06-04 11:42:11 -07:00
Bagatur
85aa218564
langchain[patch]: Release 0.2.2 (#22495) 2024-06-04 11:33:45 -07:00
Bagatur
8e86080def
mistralai[patch]: Release 0.1.8 (#22494) 2024-06-04 11:33:06 -07:00
Bagatur
e850de2422
huggingface[patch]: release 0.0.2 (#22493) 2024-06-04 11:32:36 -07:00
Jacob Lee
593de8a913
docs[patch]: Add robots.txt and root sitemap (#22492)
CC @efriis @baskaryan
2024-06-04 11:26:40 -07:00
Bagatur
99a3cad258
text-splitters[patch]: Release 0.2.1 (#22490) 2024-06-04 11:19:21 -07:00
Bagatur
161b02a8be
core[patch]: Release 0.2.4 (#22489) 2024-06-04 11:14:54 -07:00
Ragul Kachiappan
50258a7dda
docs: Update chroma docs link for collection reference (#22472)
Thank you for contributing to LangChain!

- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [x] **PR message**: 
- **Description:** Updated dead link referencing chroma docs in Chroma
notebook under vectorstores
2024-06-04 18:01:13 +00:00
nareshnagpal06
9b45374118
docs: Added Semantic Cache Example with BedrockChat using Bedrock Embedding… (#22190)
…s and Opensearch Semantic Cache

Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-04 17:40:29 +00:00
Joydeep Banik Roy
3796672c67
community, milvus, pinecone, qdrant, mongo: Broadcast operation failure while using simsimd beyond v3.7.7 (#22271)
- [ ] **Packages affected**: 
  - community: fix `cosine_similarity` to support simsimd beyond 3.7.7
- partners/milvus: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/mongodb: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/pinecone: fix `cosine_similarity` to support simsimd beyond
3.7.7
- partners/qdrant: fix `cosine_similarity` to support simsimd beyond
3.7.7


- [ ] **Broadcast operation failure while using simsimd beyond v3.7.7**:
- **Description:** I was using simsimd 4.3.1 and the unsupported operand
type issue popped up. When I checked out the repo and ran the tests,
they failed as well (have attached a screenshot for that). Looks like it
is a variant of https://github.com/langchain-ai/langchain/issues/18022 .
Prior to 3.7.7, simd.cdist returned an ndarray but now it returns
simsimd.DistancesTensor which is ineligible for a broadcast operation
with numpy. With this change, it also remove the need to explicitly cast
`Z` to numpy array
    - **Issue:** #19905
    - **Dependencies:** No
    - **Twitter handle:** https://x.com/GetzJoydeep

<img width="1622" alt="Screenshot 2024-05-29 at 2 50 00 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/fb27b383-a9ae-4a6f-b355-6d503b72db56">

- [ ] **Considerations**: 
1. I started with community but since similar changes were there in
Milvus, MongoDB, Pinecone, and QDrant so I modified their files as well.
If touching multiple packages in one PR is not the norm, then I can
remove them from this PR and raise separate ones
2. I have run and verified that the tests work. Since, only MongoDB had
tests, I ran theirs and verified it works as well. Screenshots attached
:
<img width="1573" alt="Screenshot 2024-05-29 at 2 52 13 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/ce87d1ea-19b6-4900-9384-61fbc1a30de9">
<img width="1614" alt="Screenshot 2024-05-29 at 3 33 51 PM"
src="https://github.com/langchain-ai/langchain/assets/31132555/6ce1d679-db4c-4291-8453-01028ab2dca5">
  

I have added a test for simsimd. I feel it may not go well with the
CI/CD setup as installing simsimd is not a dependency requirement. I
have just imported simsimd to ensure simsimd cosine similarity is
invoked. However, its not a good approach. Suggestions are welcome and I
can make the required changes on the PR. Please provide guidance on the
same as I am new to the community.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-06-04 17:36:31 +00:00
KyrianC
03178ee74f
community[minor]: Add tools calls to ChatEdenAI (#22320)
### Description  
Add tools implementation to `ChatEdenAI`:
- `bind_tools()`
- `with_structured_output()`

### Documentation 
Updated `docs/docs/integrations/chat/edenai.ipynb`

### Notes
We don´t support stream with tools as of yet. If stream is called with
tools we directly yield the whole message from `generate` (implemented
the same way as Anthropic did).
2024-06-04 10:29:28 -07:00
pranavvuppala
9d4350e69a
docs : Update docstrings for OpenAI base.py (#22221)
- [x] **PR title**: Update docstrings for OpenAI base.py
-**Description:** Updated the docstring of few OpenAI functions for a
better understanding of the function.
    - **Issue:** #21983

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2024-06-04 17:24:17 +00:00
Anindyadeep
7a197539aa
communty[patch]: Native RAG Support in Prem AI langchain (#22238)
This PR adds native RAG support in langchain premai package. The same
has been added in the docs too.
2024-06-04 10:19:54 -07:00
Rahul Triptahi
77ad857934
community[minor]: Enable retrieval api calls in PebbloRetrievalQA (#21958)
Description: Enable app discovery and Prompt/Response apis in
PebbloSafeRetrieval
Documentation: NA
Unit test: N/A

---------

Signed-off-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
Co-authored-by: Rahul Tripathi <rauhl.psit.ec@gmail.com>
2024-06-04 10:18:50 -07:00
liugz18
8fd231086e
experimental[patch]: Fix graph_transformers llms #21482 (#22417)
Fix AttributeError on calling
LLMGraphTransformer.convert_to_graph_documents #21482

 since raw_schema is always a str

@baskaryan
2024-06-04 17:07:38 +00:00
ccurme
6db25b4e31
core[patch]: bump langsmith (#22476)
Noticing errors logged in some situations when tracing with Langsmith:
```python
from langchain_core.pydantic_v1 import BaseModel
from langchain_anthropic import ChatAnthropic


class AnswerWithJustification(BaseModel):
    """An answer to the user question along with justification for the answer."""
    answer: str
    justification: str


llm = ChatAnthropic(model="claude-3-haiku-20240307")
structured_llm = llm.with_structured_output(AnswerWithJustification)

list(structured_llm.stream("What weighs more a pound of bricks or a pound of feathers"))
```
```
Error in LangChainTracer.on_chain_end callback: AttributeError("'NoneType' object has no attribute 'append'")
[AnswerWithJustification(answer='A pound of bricks and a pound of feathers weigh the same amount.', justification='This is because a pound is a unit of mass, not volume. By definition, a pound of any material, whether bricks or feathers, will weigh the same - one pound. The physical size or volume of the materials does not matter when measuring by mass. So a pound of bricks and a pound of feathers both weigh exactly one pound.')]
```
2024-06-04 10:05:53 -07:00
Bagatur
17c127531a
community[patch]: deprecate all HF classes (#22444) 2024-06-04 09:48:25 -07:00
Nuno Campos
58b118544e
Use immutable sequence type for batch/batch_as_completed types (#22433)
Thank you for contributing to LangChain!

- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
  - Example: "community: add foobar LLM"


- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
    - **Description:** a description of the change
    - **Issue:** the issue # it fixes, if applicable
    - **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!


- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.


- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
2024-06-04 08:04:09 -07:00
Christophe Bornet
9a8fe58ebe
community[minor]: Improve Cassandra VectorStore as_retriever (#22465)
The Vectorstore's API `as_retriever` doesn't expose explicitly the
parameters `search_type` and `search_kwargs` and so these are not well
documented.
This PR improves `as_retriever` for the Cassandra VectorStore by making
these parameters explicit.

NB: An alternative would have been to modify `as_retriever` in
`Vectorstore`. But there's probably a good reason these were not exposed
in the first place ? Is it because implementations may decide to not
support them and have fixed values when creating the
VectorStoreRetriever ?
2024-06-04 09:51:17 -04:00
Christophe Bornet
23bba18f92
core[patch]: Fix VectorStore's as_retriever mutating tags param (#22470)
The current VectorStore `as_retriever` implementation mutates the `tags`
param when it's passed in kwargs.
This fix ensures that a copy is done.
2024-06-04 09:50:36 -04:00
Michal Gregor
98b2e7b195
huggingface[patch]: Support for HuggingFacePipeline in ChatHuggingFace. (#22194)
- **Description:** Added support for using HuggingFacePipeline in
ChatHuggingFace (previously it was only usable with API endpoints,
probably by oversight).
- **Issue:** #19997 
- **Dependencies:** none
- **Twitter handle:** none

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-06-04 00:47:35 +00:00
Fahreddin Özcan
0061ded002
community[patch]: Upstash Vector Store Namespace Support (#22251)
This PR introduces namespace support for Upstash Vector Store, which
would allow users to partition their data in the vector index.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
2024-06-03 17:30:56 -07:00