This PR migrates the existing MongoDBAtlasVectorSearch abstraction from
the `langchain_community` section to the partners package section of the
codebase.
- [x] Run the partner package script as advised in the partner-packages
documentation.
- [x] Add Unit Tests
- [x] Migrate Integration Tests
- [x] Refactor `MongoDBAtlasVectorStore` (autogenerated) to
`MongoDBAtlasVectorSearch`
- [x] ~Remove~ deprecate the old `langchain_community` VectorStore
references.
## Additional Callouts
- Implemented the `delete` method
- Included any missing async function implementations
- `amax_marginal_relevance_search_by_vector`
- `adelete`
- Added new Unit Tests that test for functionality of
`MongoDBVectorSearch` methods
- Removed [`del
res[self._embedding_key]`](e0c81e1cb0/libs/community/langchain_community/vectorstores/mongodb_atlas.py (L218))
in `_similarity_search_with_score` function as it would make the
`maximal_marginal_relevance` function fail otherwise. The `Document`
needs to store the embedding key in metadata to work.
Checklist:
- [x] PR title: Please title your PR "package: description", where
"package" is whichever of langchain, community, core, experimental, etc.
is being modified. Use "docs: ..." for purely docs changes, "templates:
..." for template changes, "infra: ..." for CI changes.
- Example: "community: add foobar LLM"
- [x] PR message
- [x] Pass lint and test: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified to check that you're
passing lint and testing. See contribution guidelines for more
information on how to write/run tests, lint, etc:
https://python.langchain.com/docs/contributing/
- [x] Add tests and docs: If you're adding a new integration, please
include
1. Existing tests supplied in docs/docs do not change. Updated
docstrings for new functions like `delete`
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory. (This already exists)
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Steven Silvester <steven.silvester@ieee.org>
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:**
Embedding field name was hard-coded named "embedding".
So I suggest that change `res["embedding"]` into
`res[self._embedding_key]`.
- **Issue:** #17177,
- **Twitter handle:**
[@bagcheoljun17](https://twitter.com/bagcheoljun17)
Adds the ability to return similarity scores when using
`RetrievalQA.from_chain_type` with `MongoDBAtlasVectorSearch`. Requires
that `return_source_documents=True` is set.
Example use:
```
vector_search = MongoDBAtlasVectorSearch.from_documents(...)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=vector_search.as_retriever(search_kwargs={"additional": ["similarity_score"]}),
return_source_documents=True
)
...
docs = qa({"query": "..."})
docs["source_documents"][0].metadata["score"] # score will be here
```
I've tested this feature locally, using a MongoDB Atlas Cluster with a
vector search index.
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
Adds the option for `similarity_score_threshold` when using
`MongoDBAtlasVectorSearch` as a vector store retriever.
Example use:
```
vector_search = MongoDBAtlasVectorSearch.from_documents(...)
qa_retriever = vector_search.as_retriever(
search_type="similarity_score_threshold",
search_kwargs={
"score_threshold": 0.5,
}
)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=qa_retriever,
)
docs = qa({"query": "..."})
```
I've tested this feature locally, using a MongoDB Atlas Cluster with a
vector search index.