First of a few PRs to add full compatibility to both pydantic v1 and v2.
This PR creates pydantic v1 namespace and adds it to sys.modules.
Upcoming changes:
1. Handle `openapi-schema-pydantic = "^1.2"` and dependent chains/tools
2. bump dependencies to versions that are cross compatible for pydantic
or remove them (see below)
3. Add tests to github workflows to test with pydantic v1 and v2
**Dependencies**
From a quick look (could be wrong since was done manually)
**dependencies pinning pydantic below 2** (some of these can be bumped
to newer versions are provide cross-compatible code)
anthropic
bentoml
confection
fastapi
langsmith
octoai-sdk
openapi-schema-pydantic
qdrant-client
spacy
steamship
thinc
zep-python
Unpinned
marqo (*)
nomic (*)
xinference(*)
## Description:
Sets default values for `client` and `model` attributes in the
BaseOpenAI class to fix Pylance Typing issue.
- Issue: #9182.
- Twitter handle: @evanmschultz
Adds [DeepSparse](https://github.com/neuralmagic/deepsparse) as an LLM
backend. DeepSparse supports running various open-source sparsified
models hosted on [SparseZoo](https://sparsezoo.neuralmagic.com/) for
performance gains on CPUs.
Twitter handles: @mgoin_ @neuralmagic
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Added SmartGPT workflow by providing SmartLLM wrapper around LLMs
Edit:
As @hwchase17 suggested, this should be a chain, not an LLM. I have
adapted the PR.
It is used like this:
```
from langchain.prompts import PromptTemplate
from langchain.chains import SmartLLMChain
from langchain.chat_models import ChatOpenAI
hard_question = "I have a 12 liter jug and a 6 liter jug. I want to measure 6 liters. How do I do it?"
hard_question_prompt = PromptTemplate.from_template(hard_question)
llm = ChatOpenAI(model_name="gpt-4")
prompt = PromptTemplate.from_template(hard_question)
chain = SmartLLMChain(llm=llm, prompt=prompt, verbose=True)
chain.run({})
```
Original text:
Added SmartLLM wrapper around LLMs to allow for SmartGPT workflow (as in
https://youtu.be/wVzuvf9D9BU). SmartLLM can be used wherever LLM can be
used. E.g:
```
smart_llm = SmartLLM(llm=OpenAI())
smart_llm("What would be a good company name for a company that makes colorful socks?")
```
or
```
smart_llm = SmartLLM(llm=OpenAI())
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=smart_llm, prompt=prompt)
chain.run("colorful socks")
```
SmartGPT consists of 3 steps:
1. Ideate - generate n possible solutions ("ideas") to user prompt
2. Critique - find flaws in every idea & select best one
3. Resolve - improve upon best idea & return it
Fixes#4463
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @agola11
Twitter: [@UmerHAdil](https://twitter.com/@UmerHAdil) | Discord:
RicChilligerDude#7589
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
# Ensure deployment_id is set to provided deployment, required for Azure
OpenAI.
---------
Co-authored-by: Lucas Pickup <lupickup@microsoft.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit adds the LangChain utility which allows for the real-time
retrieval of cryptocurrency exchange prices. With LangChain, users can
easily access up-to-date pricing information by running the command
".run(from_currency, to_currency)". This new feature provides a
convenient way to stay informed on the latest exchange rates and make
informed decisions when trading crypto.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Adds the ArcGISLoader class to
`langchain.document_loaders`
- Allows users to load data from ArcGIS Online, Portal, and similar
- Users can authenticate with `arcgis.gis.GIS` or retrieve public data
anonymously
- Uses the `arcgis.features.FeatureLayer` class to retrieve the data
- Defines the most relevant keywords arguments and accepts `**kwargs`
- Dependencies: Using this class requires `arcgis` and, optionally,
`bs4.BeautifulSoup`.
Tagging maintainers:
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Formatted docstrings from different formats to consistent format, lile:
>Loads processed docs from Docugami.
"Load from `Docugami`."
>Loader that uses Unstructured to load HTML files.
"Load `HTML` files using `Unstructured`."
>Load documents from a directory.
"Load from a directory."
- `Load` - no `Loads`
- DocumentLoader always loads Documents, so no more
"documents/docs/texts/ etc"
- integrated systems and APIs enclosed in backticks,
As stated in the title the SVM retriever discarded the metadata of
passed in docs. This code fixes that. I also added one unit test that
should test that.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Added a new use case category called "Web Scraping", and
a tutorial to scrape websites using OpenAI Functions Extraction chain to
the docs.
- Tag maintainer:@baskaryan @hwchase17 ,
- Twitter handle: https://www.linkedin.com/in/haiphunghiem/ (I'm on
LinkedIn mostly)
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
This change updates the central utility class to recognize a Redis
cluster server after connection and returns an new cluster aware Redis
client. The "normal" Redis client would not be able to talk to a cluster
node because keys might be stored on other shards of the Redis cluster
and therefor not readable or writable.
With this patch clients do not need to know what Redis server it is,
they just connect though the same API calls for standalone and cluster
server.
There are no dependencies added due to this MR.
Remark - with current redis-py client library (4.6.0) a cluster cannot
be used as VectorStore. It can be used for other use-cases. There is a
bug / missing feature(?) in the Redis client breaking the VectorStore
implementation. I opened an issue at the client library too
(redis/redis-py#2888) to fix this. As soon as this is fixed in
`redis-py` library it should be usable there too.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR introduces [Label Studio](https://labelstud.io/) integration
with LangChain via `LabelStudioCallbackHandler`:
- sending data to the Label Studio instance
- labeling dataset for supervised LLM finetuning
- rating model responses
- tracking and displaying chat history
- support for custom data labeling workflow
### Example
```
chat_llm = ChatOpenAI(callbacks=[LabelStudioCallbackHandler(mode="chat")])
chat_llm([
SystemMessage(content="Always use emojis in your responses."),
HumanMessage(content="Hey AI, how's your day going?"),
AIMessage(content="🤖 I don't have feelings, but I'm running smoothly! How can I help you today?"),
HumanMessage(content="I'm feeling a bit down. Any advice?"),
AIMessage(content="🤗 I'm sorry to hear that. Remember, it's okay to seek help or talk to someone if you need to. 💬"),
HumanMessage(content="Can you tell me a joke to lighten the mood?"),
AIMessage(content="Of course! 🎭 Why did the scarecrow win an award? Because he was outstanding in his field! 🌾"),
HumanMessage(content="Haha, that was a good one! Thanks for cheering me up."),
AIMessage(content="Always here to help! 😊 If you need anything else, just let me know."),
HumanMessage(content="Will do! By the way, can you recommend a good movie?"),
])
```
<img width="906" alt="image"
src="https://github.com/langchain-ai/langchain/assets/6087484/0a1cf559-0bd3-4250-ad96-6e71dbb1d2f3">
### Dependencies
- [label-studio](https://pypi.org/project/label-studio/)
- [label-studio-sdk](https://pypi.org/project/label-studio-sdk/)
https://twitter.com/labelstudiohq
---------
Co-authored-by: nik <nik@heartex.net>
As of the recent PR at #9043, after some testing we've realised that the
default values were not being used for `api_key` and `api_url`. Besides
that, the default for `api_key` was set to `argilla.apikey`, but since
the default values are intended for people using the Argilla Quickstart
(easy to run and setup), the defaults should be instead `owner.apikey`
if using Argilla 1.11.0 or higher, or `admin.apikey` if using a lower
version of Argilla.
Additionally, we've removed the f-string replacements from the
docstrings.
---------
Co-authored-by: Gabriel Martin <gabriel@argilla.io>
This MR corrects the IndexError arising in prep_prompts method when no
documents are returned from a similarity search.
Fixes#1733
Co-authored-by: Sam Groenjes <sam.groenjes@darkwolfsolutions.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
### Description:
`ConversationBufferTokenMemory` should have a simple way of returning
the conversation messages as a string.
Previously to complete this, you would only have the option to return
memory as an array through the buffer method and call
`get_buffer_string` by importing it from `langchain.schema`, or use the
`load_memory_variables` method and key into `self.memory_key`.
### Maintainer
@hwchase17
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Now that we accept any runnable or arbitrary function to evaluate, we
don't always look up the input keys. If an evaluator requires
references, we should try to infer if there's one key present. We only
have delayed validation here but it's better than nothing
- **Description**: [BagelDB](bageldb.ai) a collaborative vector
database. Integrated the bageldb PyPi package with langchain with
related tests and code.
- **Issue**: Not applicable.
- **Dependencies**: `betabageldb` PyPi package.
- **Tag maintainer**: @rlancemartin, @eyurtsev, @baskaryan
- **Twitter handle**: bageldb_ai (https://twitter.com/BagelDB_ai)
We ran `make format`, `make lint` and `make test` locally.
Followed the contribution guideline thoroughly
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
---------
Co-authored-by: Towhid1 <nurulaktertowhid@gmail.com>
Description: updated BabyAGI examples and experimental to append the
iteration to the result id to fix error storing data to vectorstore.
Issue: 7445
Dependencies: no
Tag maintainer: @eyurtsev
This fix worked for me locally. Happy to take some feedback and iterate
on a better solution. I was considering appending a uuid instead but
didn't want to over complicate the example.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Add convenience methods to `ConversationBufferMemory` and
`ConversationBufferWindowMemory` to get buffer either as messages or as
string.
Helps when `return_messages` is set to `True` but you want access to the
messages as a string, and vice versa.
@hwchase17
One use case: Using a `MultiPromptRouter` where `default_chain` is
`ConversationChain`, but destination chains are `LLMChains`. Injecting
chat memory into prompts for destination chains prints a stringified
`List[Messages]` in the prompt, which creates a lot of noise. These
convenience methods allow caller to choose either as needed.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Due to some issue on the test, this is a separate PR with
the test for #8502
Tag maintainer: @rlancemartin
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Current regex only extracts agent's action between '` ``` ``` `', this
commit will extract action between both '` ```json ``` `' and '` ``` ```
`'
This is very similar to #7511
Co-authored-by: zjl <junlinzhou@yzbigdata.com>
## Description
This PR adds the `aembed_query` and `aembed_documents` async methods for
improving the embeddings generation for large documents. The
implementation uses asyncio tasks and gather to achieve concurrency as
there is no bedrock async API in boto3.
### Maintainers
@agola11
@aarora79
### Open questions
To avoid throttling from the Bedrock API, should there be an option to
limit the concurrency of the calls?
I was initially confused weather to use create_vectorstore_agent or
create_vectorstore_router_agent due to lack of documentation so I
created a simple documentation for each of the function about their
different usecase.
Replace this comment with:
- Description: Added the doc_strings in create_vectorstore_agent and
create_vectorstore_router_agent to point out the difference in their
usecase
- Tag maintainer: @rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Hi @agola11, or whoever is reviewing this PR 😄
## What's in this PR?
As of the latest Argilla release, we'll change and refactor some things
to make some workflows easier, one of those is how everything's pushed
to Argilla, so that now there's no need to call `push_to_argilla` over a
`FeedbackDataset` when either `push_to_argilla` is called for the first
time, or `from_argilla` is called; among others.
We also add some class variables to make sure those are easy to update
in case we update those internally in the future, also to make the
`warnings.warn` message lighter from the code view.
P.S. Regarding the Twitter/X mention feel free to do so at either
https://twitter.com/argilla_io or https://twitter.com/alvarobartt, or
both if applicable, otherwise, just the first Twitter/X handle.
## Description:
This PR adds the Titan Takeoff Server to the available LLMs in
LangChain.
Titan Takeoff is an inference server created by
[TitanML](https://www.titanml.co/) that allows you to deploy large
language models locally on your hardware in a single command. Most
generative model architectures are included, such as Falcon, Llama 2,
GPT2, T5 and many more.
Read more about Titan Takeoff here:
-
[Blog](https://medium.com/@TitanML/introducing-titan-takeoff-6c30e55a8e1e)
- [Docs](https://docs.titanml.co/docs/titan-takeoff/getting-started)
#### Testing
As Titan Takeoff runs locally on port 8000 by default, no network access
is needed. Responses are mocked for testing.
- [x] Make Lint
- [x] Make Format
- [x] Make Test
#### Dependencies
No new dependencies are introduced. However, users will need to install
the titan-iris package in their local environment and start the Titan
Takeoff inferencing server in order to use the Titan Takeoff
integration.
Thanks for your help and please let me know if you have any questions.
cc: @hwchase17 @baskaryan
- Description: Fixes an issue with Metaphor Search Tool throwing when
missing keys in API response.
- Issue: #9048
- Tag maintainer: @hinthornw @hwchase17
- Twitter handle: @pelaseyed
This PR adds the ability to temporarily cache or persistently store
embeddings.
A notebook has been included showing how to set up the cache and how to
use it with a vectorstore.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
FileCallbackHandler cannot handle some language, for example: Chinese.
Open file using UTF-8 encoding can fix it.
@agola11
**Issue**: #6919
**Dependencies**: NO dependencies,
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
DirectoryLoader can now return a random sample of files in a directory.
Parameters added are:
sample_size
randomize_sample
sample_seed
@rlancemartin, @eyurtsev
---------
Co-authored-by: Andrew Oseen <amovfx@protonmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- Description: Allow GoogleDriveLoader to handle empty spreadsheets
- Issue: Currently GoogleDriveLoader will crash if it tries to load a
spreadsheet with an empty sheet
- Dependencies: n/a
- Tag maintainer: @rlancemartin, @eyurtsev
This pull request aims to ensure that the `OpenAICallbackHandler` can
properly calculate the total cost for Azure OpenAI chat models. The
following changes have resolved this issue:
- The `model_name` has been added to the ChatResult llm_output. Without
this, the default values of `gpt-35-turbo` were applied. This was
causing the total cost for Azure OpenAI's GPT-4 to be significantly
inaccurate.
- A new parameter `model_version` has been added to `AzureChatOpenAI`.
Azure does not include the model version in the response. With the
addition of `model_name`, this is not a significant issue for GPT-4
models, but it's an issue for GPT-3.5-Turbo. Version 0301 (default) of
GPT-3.5-Turbo on Azure has a flat rate of 0.002 per 1k tokens for both
prompt and completion. However, version 0613 introduced a split in
pricing for prompt and completion tokens.
- The `OpenAICallbackHandler` implementation has been updated with the
proper model names, versions, and cost per 1k tokens.
Unit tests have been added to ensure the functionality works as
expected; the Azure ChatOpenAI notebook has been updated with examples.
Maintainers: @hwchase17, @baskaryan
Twitter handle: @jjczopek
---------
Co-authored-by: Jerzy Czopek <jerzy.czopek@avanade.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: Adds Rockset as a chat history store
Dependencies: no changes
Tag maintainer: @hwchase17
This PR passes linting and testing.
I added a test for the integration and an example notebook showing its
use.
This PR adds 8 new loaders:
* `AirbyteCDKLoader` This reader can wrap and run all python-based
Airbyte source connectors.
* Separate loaders for the most commonly used APIs:
* `AirbyteGongLoader`
* `AirbyteHubspotLoader`
* `AirbyteSalesforceLoader`
* `AirbyteShopifyLoader`
* `AirbyteStripeLoader`
* `AirbyteTypeformLoader`
* `AirbyteZendeskSupportLoader`
## Documentation and getting started
I added the basic shape of the config to the notebooks. This increases
the maintenance effort a bit, but I think it's worth it to make sure
people can get started quickly with these important connectors. This is
also why I linked the spec and the documentation page in the readme as
these two contain all the information to configure a source correctly
(e.g. it won't suggest using oauth if that's avoidable even if the
connector supports it).
## Document generation
The "documents" produced by these loaders won't have a text part
(instead, all the record fields are put into the metadata). If a text is
required by the use case, the caller needs to do custom transformation
suitable for their use case.
## Incremental sync
All loaders support incremental syncs if the underlying streams support
it. By storing the `last_state` from the reader instance away and
passing it in when loading, it will only load updated records.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR defines an abstract interface for key value stores.
It provides 2 implementations:
1. Local File System
2. In memory -- used to facilitate testing
It also provides an encoder utility to help take care of serialization
from arbitrary data to data that can be stored by the given store
Proposal for an internal API to deprecate LangChain code.
This PR is heavily based on:
https://github.com/matplotlib/matplotlib/blob/main/lib/matplotlib/_api/deprecation.py
This PR only includes deprecation functionality (no renaming etc.).
Additional functionality can be added on a need basis (e.g., renaming
parameters), but best to roll out as an MVP to test this
out.
DeprecationWarnings are ignored by default. We can change the policy for
the deprecation warnings, but we'll need to make sure we're not creating
noise for users due to internal code invoking deprecated functionality.
- Description: consistent timeout at 60s for all calls to Vectara API
- Tag maintainer: @rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Replace this comment with:
- Description: Improved query of BGE embeddings after talking with the
devs of BGE embeddings ,
- Dependencies: any dependencies required for this change,
- Tag maintainer: @hwchase17 ,
- Twitter handle: @ManabChetia3
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
- Description: added filter to query methods in VectorStoreIndexWrapper
for filtering by metadata (i.e. search_kwargs)
- Tag maintainer: @rlancemartin, @eyurtsev
Updated the doc snippet on this topic as well. It took me a long while
to figure out how to filter the vectorstore by filename, so this might
help someone else out.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This addresses some issues with introducing the Nebula LLM to LangChain
in this PR:
https://github.com/langchain-ai/langchain/pull/8876
This fixes the following:
- Removes `SYMBLAI` from variable names
- Fixes bug with `Bearer` for the API KEY
Thanks again in advance for your help!
cc: @hwchase17, @baskaryan
---------
Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
### Description
Now, we can pass information like a JWT token using user_context:
```python
self.retriever = AmazonKendraRetriever(index_id=kendraIndexId, user_context={"Token": jwt_token})
```
- [x] `make lint`
- [x] `make format`
- [x] `make test`
Also tested by pip installing in my own project, and it allows access
through the token.
### Maintainers
@rlancemartin, @eyurtsev
### My twitter handle
[girlknowstech](https://twitter.com/girlknowstech)
- Description: The API doc passed to LLM only included the content of
responses but did not include the content of requestBody, causing the
agent to be unable to construct the correct request parameters based on
the requestBody information. Add two lines of code fixed the bug,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: @hinthornw ,
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Adds Ollama as an LLM. Ollama can run various open source models locally
e.g. Llama 2 and Vicuna, automatically configuring and GPU-optimizing
them.
@rlancemartin @hwchase17
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
## Description
I am excited to propose an integration with USearch, a lightweight
vector-search engine available for both Python and JavaScript, among
other languages.
## Dependencies
It introduces a new PyPi dependency - `usearch`. I am unsure if it must
be added to the Poetry file, as this would make the PR too clunky.
Please let me know.
## Profiles
- Maintainers: @ashvardanian @davvard
- Twitter handles: @ashvardanian @unum_cloud
---------
Co-authored-by: Davit Vardanyan <78792753+davvard@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Update to #8528
Newlines and other special characters within markdown code blocks
returned as `action_input` should be handled correctly (in particular,
unescaped `"` => `\"` and `\n` => `\\n`) so they don't break JSON
parsing.
@baskaryan
when e.g. downloading a sitemap with a malformed url (e.g.
"ttp://example.com/index.html" with the h omitted at the beginning of
the url), this will ensure that the sitemap download does not crash, but
just emits a warning. (maybe should be optional with e.g. a
`skip_faulty_urls:bool=True` parameter, but this was the most
straightforward fix)
@rlancemartin, @eyurtsev
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Added async parsing functions for RetryOutputParser,
RetryWithErrorOutputParser and OutputFixingParser.
The async parse functions call the arun methods of the used LLMChains.
Fix for #7989
---------
Co-authored-by: Benjamin May <benjamin.may94@gmail.com>
- Description: Adds the ChatAnyscale class with llama-2 7b, llama-2 13b,
and llama-2 70b on [Anyscale
Endpoints](https://app.endpoints.anyscale.com/)
- It inherits from ChatOpenAI and requires openai (probably unnecessary
but it made for a quick and easy implementation)
- Inspired by https://github.com/langchain-ai/langchain/pull/8434
(@kylehh and @baskaryan )
## Description
This PR adds Nebula to the available LLMs in LangChain.
Nebula is an LLM focused on conversation understanding and enables users
to extract conversation insights from video, audio, text, and chat-based
conversations. These conversations can occur between any mix of human or
AI participants.
Examples of some questions you could ask Nebula from a given
conversation are:
- What could be the customer’s pain points based on the conversation?
- What sales opportunities can be identified from this conversation?
- What best practices can be derived from this conversation for future
customer interactions?
You can read more about Nebula here:
https://symbl.ai/blog/extract-insights-symbl-ai-generative-ai-recall-ai-meetings/
#### Integration Test
An integration test is added, but it requires network access. Since
Nebula is fully managed like OpenAI, network access is required to
exercise the integration test.
#### Linting
- [x] make lint
- [x] make test (TODO: there seems to be a failure in another
non-related test??? Need to check on this.)
- [x] make format
### Dependencies
No new dependencies were introduced.
### Twitter handle
[@symbldotai](https://twitter.com/symbldotai)
[@dvonthenen](https://twitter.com/dvonthenen)
If you have any questions, please let me know.
cc: @hwchase17, @baskaryan
---------
Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
# What
- fix evaluation parse test
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: Fix evaluation parse test
- Issue: None
- Dependencies: None
- Tag maintainer: @baskaryan
- Twitter handle: @MLOpsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: Fix/abstract add message
- Issue: None
- Dependencies: None
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: @MLOpsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Long-term, would be better to use the lower-level batch() method(s) but
it may take me a bit longer to clean up. This unblocks in the meantime,
though it may fail when the evaluated chain raises a
`NotImplementedError` for a corresponding async method
This adds support for [Xata](https://xata.io) (data platform based on
Postgres) as a vector store. We have recently added [Xata to
Langchain.js](https://github.com/hwchase17/langchainjs/pull/2125) and
would love to have the equivalent in the Python project as well.
The PR includes integration tests and a Jupyter notebook as docs. Please
let me know if anything else would be needed or helpful.
I have added the xata python SDK as an optional dependency.
## To run the integration tests
You will need to create a DB in xata (see the docs), then run something
like:
```
OPENAI_API_KEY=sk-... XATA_API_KEY=xau_... XATA_DB_URL='https://....xata.sh/db/langchain' poetry run pytest tests/integration_tests/vectorstores/test_xata.py
```
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Philip Krauss <35487337+philkra@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
#7469
since 1.29.0, Vertex SDK supports a chat history provided to a codey
chat model.
Co-authored-by: Leonid Kuligin <kuligin@google.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Hello langchain maintainers,
this PR aims at integrating
[vllm](https://vllm.readthedocs.io/en/latest/#) into langchain. This PR
closes#8729.
This feature clearly depends on `vllm`, but I've seen other models
supported here depend on packages that are not included in the
pyproject.toml (e.g. `gpt4all`, `text-generation`) so I thought it was
the case for this as well.
@hwchase17, @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
@hwchase17, @baskaryan
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Nuno Campos <nuno@boringbits.io>
- Updated to use newer better function interaction
- Previous version had only one callback
- @hinthornw @hwchase17 Can you look into this
- Shout out to @MultiON_AI @DivGarg9 on twitter
---------
Co-authored-by: Naman Garg <ngarg3@binghamton.edu>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Description: The lines I have changed looks like incorrectly escaped for
regex. In python 3.11, I receive DeprecationWarning for these lines.
You don't see any warnings unless you explicitly run python with `-W
always::DeprecationWarning` flag. So, this is my attempt to fix it.
Here are the warnings from log files:
```
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:919: DeprecationWarning: invalid escape sequence '\s'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:918: DeprecationWarning: invalid escape sequence '\s'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:917: DeprecationWarning: invalid escape sequence '\s'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:916: DeprecationWarning: invalid escape sequence '\c'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:903: DeprecationWarning: invalid escape sequence '\*'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:804: DeprecationWarning: invalid escape sequence '\*'
/usr/local/lib/python3.11/site-packages/langchain/text_splitter.py:804: DeprecationWarning: invalid escape sequence '\*'
```
cc @baskaryan
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Description: This PR improves the function of recursive_url_loader, such
as limiting the depth of the access, and customizable extractors(from
the raw webpage to the text of the Document object), so that users can
use other tools to extract the webpage. This PR also includes the
document and test for the new loader.
Old PR closed due to project structure change. #7756
Because socket requests are not allowed, the old unit test was removed.
Issue: N/A
Dependencies: asyncio, aiohttp
Tag maintainer: @rlancemartin
Twitter handle: @ Zend_Nihility
---------
Co-authored-by: Lance Martin <lance@langchain.dev>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: docstore had two main method: add and search, however,
dealing with docstore sometimes requires deleting an entry from
docstore. So I have added a simple delete method that deletes items from
docstore. Additionally, I have added the delete method to faiss
vectorstore for the very same reason.
- Issue: NA
- Dependencies: NA
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fix Issue #7616 with a simpler approach to extract function names (use
`__name__` attribute)
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixes for #8786 @agola11
- Description: The flow of callback is breaking till the last chain, as
callbacks are missed in between chain along nested path. This will help
get full trace and correlate parent child relationship in all nested
chains.
- Issue: the issue #8786
- Dependencies: NA
- Tag maintainer: @agola11
- Twitter handle: Agarwal_Ankur
Description: When using a ReAct Agent with tools and no tool is found,
the InvalidTool gets called. Previously it just asked for a different
action, but I've found that if you list the available actions it
improves the chances of getting a valid action in the next round. I've
added a UnitTest for it also.
@hinthornw
# What
- Add missing test for retrievers self_query
- Add missing import validation
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: Add missing test for retrievers self_query
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
- Description: we expose Kendra result item id and document id as
document metadata.
- Tag maintainer: @3coins @baskaryan
- Twitter handle: wilsonleao
**Why**
The result item id and document id might be used to keep track of the
retrieved resources.
Added a couple of "integration tests" for these that I ran.
Main design point of feedback: at this point, would it just be better to
have separate arguments for each type? Little confusing what is or isn't
supported and what is the intended usage at this point since I try to
wrap the function as runnable or pack or unpack chains/llms.
```
run_on_dataset(
...
llm_or_chain_factory = None,
llm = None,
chain = NOne,
runnable=None,
function=None
):
# raise error if none set
```
Downside with runnables and arbitrary function support is that you get
much less helpful validation and error messages, but I don't think we
should block you from this, at least.
Description: Adding support for [Amazon
Textract](https://aws.amazon.com/textract/) as a PDF document loader
---------
Co-authored-by: schadem <45048633+schadem@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Resolves occasional JSON parsing error when some predictions are passed
through a `MultiPromptChain`.
Makes [this
modification](https://github.com/langchain-ai/langchain/issues/5163#issuecomment-1652220401)
to `multi_prompt_prompt.py`, which is much cleaner than appending an
entire example object, which is another community-reported solution.
@hwchase17, @baskaryan
cc: @SimasJan
llamacpp params (per their own code) are unstable, so instead of
adding/deleting them constantly adding a model_kwargs parameter that
allows for arbitrary additional kwargs
cc @jsjolund and @zacps re #8599 and #8704
There is already a `loads()` function which takes a JSON string and
loads it using the Reviver
But in the callbacks system, there is a `serialized` object that is
passed in and that object is already a deserialized JSON-compatible
object. This allows you to call `load(serialized)` and bypass
intermediate JSON encoding.
I found one other place in the code that benefited from this
short-circuiting (string_run_evaluator.py) so I fixed that too.
Tagging @baskaryan for general/utility stuff.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Nuno Campos <nuno@boringbits.io>
Description: Add ScaNN vectorstore to langchain.
ScaNN is a Open Source, high performance vector similarity library
optimized for AVX2-enabled CPUs.
https://github.com/google-research/google-research/tree/master/scann
- Dependencies: scann
Python notebook to illustrate the usage:
docs/extras/integrations/vectorstores/scann.ipynb
Integration test:
libs/langchain/tests/integration_tests/vectorstores/test_scann.py
@rlancemartin, @eyurtsev for review.
Thanks!
This PR updates _load_reduce_documents_chain to handle
`reduce_documents_chain` and `combine_documents_chain` config
Please review @hwchase17, @baskaryan
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# What
- This is to add filter option to sklearn vectore store functions
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: Add filter to sklearn vectore store functions.
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This is to add save_local and load_local to tfidf_vectorizer and docs in
tfidf_retriever to make the vectorizer reusable.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: add save_local and load_local to tfidf_vectorizer and
docs in tfidf_retriever
- Issue: None
- Dependencies: None
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @MlopsJ
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Removing score threshold parameter of faiss
_similarity_search_with_relevance_scores as the thresholding part is
implemented in similarity_search_with_relevance_scores method which
calls this method.
As this method is supposed to be a private method of faiss.py this will
never receive the score threshold parameter as it is popped in the super
method similarity_search_with_relevance_scores.
@baskaryan @hwchase17
Just a tiny change to use `list.append(...)` and `list.extend(...)`
instead of `list += [...]` so that no unnecessary temporary lists are
created.
Since its a tiny miscellaneous thing I guess @baskaryan is the
maintainer to tag?
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Simple retriever that applies an LLM between the user input and the
query pass the to retriever.
It can be used to pre-process the user input in any way.
The default prompt:
```
DEFAULT_QUERY_PROMPT = PromptTemplate(
input_variables=["question"],
template="""You are an assistant tasked with taking a natural languge query from a user
and converting it into a query for a vectorstore. In this process, you strip out
information that is not relevant for the retrieval task. Here is the user query: {question} """
)
```
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- Description:
- Provides a new attribute in the AmazonKendraRetriever which processes
a ResultItem and returns a string that will be used as page_content;
- The excerpt metadata should not be changed, it will be kept as was
retrieved. But it is cleaned when composing the page_content;
- Refactors the AmazonKendraRetriever to improve code reusability;
- Issue: #7787
- Tag maintainer: @3coins @baskaryan
- Twitter handle: wilsonleao
**Why?**
Some use cases need to adjust the page_content by dynamically combining
the ResultItem attributes depending on the context of the item.
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure you're PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
#7854
Added the ability to use the `separator` ase a regex or a simple
character.
Fixed a bug where `start_index` was incorrectly counting from -1.
Who can review?
@eyurtsev
@hwchase17
@mmz-001
When using AzureChatOpenAI the openai_api_type defaults to "azure". The
utils' get_from_dict_or_env() function triggered by the root validator
does not look for user provided values from environment variables
OPENAI_API_TYPE, so other values like "azure_ad" are replaced with
"azure". This does not allow the use of token-based auth.
By removing the "default" value, this allows environment variables to be
pulled at runtime for the openai_api_type and thus enables the other
api_types which are expected to work.
This fixes#6650
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This lets you pass callbacks when you create the summarize chain:
```
summarize = load_summarize_chain(llm, chain_type="map_reduce", callbacks=[my_callbacks])
summary = summarize(documents)
```
See #5572 for a similar surgical fix.
tagging @hwchase17 for callbacks work
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
This is another case, similar to #5572 and #7565 where the callbacks are
getting dropped during construction of the chains.
tagging @hwchase17 and @agola11 for callbacks propagation
<!-- Thank you for contributing to LangChain!
Replace this comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use.
Maintainer responsibilities:
- General / Misc / if you don't know who to tag: @baskaryan
- DataLoaders / VectorStores / Retrievers: @rlancemartin, @eyurtsev
- Models / Prompts: @hwchase17, @baskaryan
- Memory: @hwchase17
- Agents / Tools / Toolkits: @hinthornw
- Tracing / Callbacks: @agola11
- Async: @agola11
If no one reviews your PR within a few days, feel free to @-mention the
same people again.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
-->
Description: I have added two methods serializer and deserializer
methods. There was method called save local but it saves the to the
local disk. I wanted the vectorstore in the format using which i can
push it to the sql database's blob field. I have used this while i was
working on something
@rlancemartin, @eyurtsev
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
It fails currently because the event loop is already running.
The `retry` decorator alraedy infers an `AsyncRetrying` handler for
coroutines (see [tenacity
line](aa6f8f0a24/tenacity/__init__.py (L535)))
However before_sleep always gets called synchronously (see [tenacity
line](aa6f8f0a24/tenacity/__init__.py (L338))).
Instead, check for a running loop and use that it exists. Of course,
it's running an async method synchronously which is not _nice_. Given
how important LLMs are, it may make sense to have a task list or
something but I'd want to chat with @nfcampos on where that would live.
This PR also fixes the unit tests to check the handler is called and to
make sure the async test is run (it looks like it's just been being
skipped). It would have failed prior to the proposed fixes but passes
now.
Replace this comment with:
- Description: added a document loader for a list of RSS feeds or OPML.
It iterates through the list and uses NewsURLLoader to load each
article.
- Issue: N/A
- Dependencies: feedparser, listparser
- Tag maintainer: @rlancemartin, @eyurtsev
- Twitter handle: @ruze
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Solves #8644
This embedding models output identical random embedding vectors, given
the input texts are identical.
Useful when used in unittest.
@baskaryan
## Description:
1)Map reduce example in docs is missing an important import statement.
Figured other people would benefit from being able to copy 🍝 the code.
2)RefineDocumentsChain example also broken.
## Issue:
None
## Dependencies:
None. One liner.
## Tag maintainer:
@baskaryan
## Twitter handle:
I mean, it's a one line fix lol. But @will_thompson_k is my twitter
handle.
This small PR introduces new parameters into Qdrant (`on_disk`), fixes
some tests and changes the error message to be more clear.
Tagging: @baskaryan, @rlancemartin, @eyurtsev