Thank you for contributing to LangChain!
- [x] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [x] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Updates Meilisearch vectorstore for compatibility
with v1.8. Adds [”showRankingScore”:
true”](https://www.meilisearch.com/docs/reference/api/search#ranking-score)
in the search parameters and replaces `_semanticScore` field with `
_rankingScore`
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
**Description:**
- Extend AzureSearch with `maximal_marginal_relevance` (for vector and
hybrid search)
- Add construction `from_embeddings` - if the user has already embedded
the texts
- Add `add_embeddings`
- Refactor common parts (`_simple_search`, `_results_to_documents`,
`_reorder_results_with_maximal_marginal_relevance`)
- Add `vector_search_dimensions` as a parameter to the constructor to
avoid extra calls to `embed_query` (most of the time the user applies
the same model and knows the dimension)
**Issue:** none
**Dependencies:** none
- [x] **Add tests and docs**: The docstrings have been added to the new
functions, and unified for the existing ones. The example notebook is
great in illustrating the main usage of AzureSearch, adding the new
methods would only dilute the main content.
- [x] **Lint and test**
---------
Co-authored-by: Oleksii Pokotylo <oleksii.pokotylo@pwc.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Backwards compatible extension of the initialisation
interface of HanaDB to allow the user to specify
specific_metadata_columns that are used for metadata storage of selected
keys which yields increased filter performance. Any not-mentioned
metadata remains in the general metadata column as part of a JSON
string. Furthermore switched to executemany for batch inserts into
HanaDB.
**Issue:** N/A
**Dependencies:** no new dependencies added
**Twitter handle:** @sapopensource
---------
Co-authored-by: Martin Kolb <martin.kolb@sap.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:** Added extra functionality to `CharacterTextSplitter`,
`TextSplitter` classes.
The user can select whether to append the separator to the previous
chunk with `keep_separator='end' ` or else prepend to the next chunk.
Previous functionality prepended by default to next chunk.
**Issue:** Fixes#20908
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Integrate RankLLM reranker (https://github.com/castorini/rank_llm) into
LangChain
An example notebook is given in
`docs/docs/integrations/retrievers/rankllm-reranker.ipynb`
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
- **Bug code**: In
langchain_community/document_loaders/csv_loader.py:100
- **Description**: currently, when 'CSVLoader' reads the column as None
in the 'csv' file, it will report an error because the 'CSVLoader' does
not verify whether the column is of str type and does not consider how
to handle the corresponding 'row_data' when the column is' None 'in the
csv. This pr provides a solution.
- **Issue:** Fix#20699
- **thinking:**
1. Refer to the processing method for
'langchain_community/document_loaders/csv_loader.py:100' when **'v'**
equals'None', and apply the same method to '**k**'.
(Reference`csv.DictReader` ,**'k'** will only be None when `
len(columns) < len(number_row_data)` is established)
2. **‘k’** equals None only holds when it is the last column, and its
corresponding **'v'** type is a list. Therefore, I referred to the data
format in 'Document' and used ',' to concatenated the elements in the
list.(But I'm not sure if you accept this form, if you have any other
ideas, communicate)
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
**Description:** Added revision_example prompt template to include the
revision request and revision examples in the revision chain.
**Issue:** Not Applicable
**Dependencies:** Not Applicable
**Twitter handle:** @nithinjp09
## Description
The existing public interface for `langchain_community.emeddings` is
broken. In this file, `__all__` is statically defined, but is
subsequently overwritten with a dynamic expression, which type checkers
like pyright do not support. pyright actually gives the following
diagnostic on the line I am requesting we remove:
[reportUnsupportedDunderAll](https://github.com/microsoft/pyright/blob/main/docs/configuration.md#reportUnsupportedDunderAll):
```
Operation on "__all__" is not supported, so exported symbol list may be incorrect
```
Currently, I get the following errors when attempting to use publicablly
exported classes in `langchain_community.emeddings`:
```python
import langchain_community.embeddings
langchain_community.embeddings.HuggingFaceEmbeddings(...) # error: "HuggingFaceEmbeddings" is not exported from module "langchain_community.embeddings" (reportPrivateImportUsage)
```
This is solved easily by removing the dynamic expression.
Thank you for contributing to LangChain!
- [X] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
**Description:**
Fix ChatDatabricsk in case that streaming response doesn't have role
field in delta chunk
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [X] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Signed-off-by: Weichen Xu <weichen.xu@databricks.com>
Updates docs so the example doesn't lead to a warning:
```
LangChainDeprecationWarning: Importing tools from langchain is deprecated. Importing from langchain will no longer be supported as of langchain==0.2.0. Please import from langchain-community instead:
`from langchain_community.tools import WikipediaQueryRun`.
To install langchain-community run `pip install -U langchain-community`.
```
## 'raise_for_status' parameter of WebBaseLoader works in sync load but
not in async load.
In webBaseLoader:
Sync load is calling `_scrape` and has `raise_for_status` properly
handled.
```
def _scrape(
self,
url: str,
parser: Union[str, None] = None,
bs_kwargs: Optional[dict] = None,
) -> Any:
from bs4 import BeautifulSoup
if parser is None:
if url.endswith(".xml"):
parser = "xml"
else:
parser = self.default_parser
self._check_parser(parser)
html_doc = self.session.get(url, **self.requests_kwargs)
if self.raise_for_status:
html_doc.raise_for_status()
if self.encoding is not None:
html_doc.encoding = self.encoding
elif self.autoset_encoding:
html_doc.encoding = html_doc.apparent_encoding
return BeautifulSoup(html_doc.text, parser, **(bs_kwargs or {}))
```
Async load is calling `_fetch` but missing `raise_for_status` logic.
```
async def _fetch(
self, url: str, retries: int = 3, cooldown: int = 2, backoff: float = 1.5
) -> str:
async with aiohttp.ClientSession() as session:
for i in range(retries):
try:
async with session.get(
url,
headers=self.session.headers,
ssl=None if self.session.verify else False,
cookies=self.session.cookies.get_dict(),
) as response:
return await response.text()
```
Co-authored-by: kefan.you <darkfss@sina.com>
Thank you for contributing to LangChain!
- [x] **PR title**: "update IBM WatsonxLLM docs with deprecated
LLMChain"
- [x] **PR message**:
- **Description:** update IBM WatsonxLLM docs with deprecated LLMChain
- [x] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
**Title**: "langchain: OpenAI Assistants v2 api support"
***Descriptions***
- [x] "attachments" support added along with backward compatibility of
"file_ids"
- [x] "tool_resources" support added while creating new assistant
- [ ] "tool_choice" parameter support
- [ ] Streaming support
- **Dependencies:** OpenAI v2 API (openai>=1.23.0)
- **Twitter handle:** @skanta_rath
---------
Co-authored-by: Chester Curme <chester.curme@gmail.com>
- Updated docs to have an example to use Jamba instead of J2
---------
Co-authored-by: Asaf Gardin <asafg@ai21.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
- **Description:** Tongyi uses different client for chat model and
vision model. This PR chooses proper client based on model name to
support both chat model and vision model. Reference [tongyi
document](https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-qianwen-vl-plus-api?spm=a2c4g.11186623.0.0.27404c9a7upm11)
for details.
```
from langchain_core.messages import HumanMessage
from langchain_community.chat_models import ChatTongyi
llm = ChatTongyi(model_name='qwen-vl-max')
image_message = {
"image": "https://lilianweng.github.io/posts/2023-06-23-agent/agent-overview.png"
}
text_message = {
"text": "summarize this picture",
}
message = HumanMessage(content=[text_message, image_message])
llm.invoke([message])
```
- **Issue:** None
- **Dependencies:** None
- **Twitter handle:** None
- if tap_output_iter/aiter is called multiple times for the same run
issue events only once
- if chat model run is tapped don't issue duplicate on_llm_new_token
events
- if first chunk arrives after run has ended do not emit it as a stream
event
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Thank you for contributing to LangChain!
- [ ] **PR title**: "package: description"
- Where "package" is whichever of langchain, community, core,
experimental, etc. is being modified. Use "docs: ..." for purely docs
changes, "templates: ..." for template changes, "infra: ..." for CI
changes.
- Example: "community: add foobar LLM"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** a description of the change
- **Issue:** the issue # it fixes, if applicable
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** if your PR gets announced, and you'd like a
mention, we'll gladly shout you out!
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
- [ ] **Lint and test**: Run `make format`, `make lint` and `make test`
from the root of the package(s) you've modified. See contribution
guidelines for more: https://python.langchain.com/docs/contributing/
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
- `llm_chain` becomes `Union[LLMChain, Runnable]`
- `.from_llm` creates a runnable
tested by verifying that docs/how_to/MultiQueryRetriever.ipynb runs
unchanged with sync/async invoke (and that it runs if we specifically
instantiate with LLMChain).
We add a tool and retriever for the [AskNews](https://asknews.app)
platform with example notebooks.
The retriever can be invoked with:
```py
from langchain_community.retrievers import AskNewsRetriever
retriever = AskNewsRetriever(k=3)
retriever.invoke("impact of fed policy on the tech sector")
```
To retrieve 3 documents in then news related to fed policy impacts on
the tech sector. The included notebook also includes deeper details
about controlling filters such as category and time, as well as
including the retriever in a chain.
The tool is quite interesting, as it allows the agent to decide how to
obtain the news by forming a query and deciding how far back in time to
look for the news:
```py
from langchain_community.tools.asknews import AskNewsSearch
from langchain import hub
from langchain.agents import AgentExecutor, create_openai_functions_agent
from langchain_openai import ChatOpenAI
tool = AskNewsSearch()
instructions = """You are an assistant."""
base_prompt = hub.pull("langchain-ai/openai-functions-template")
prompt = base_prompt.partial(instructions=instructions)
llm = ChatOpenAI(temperature=0)
asknews_tool = AskNewsSearch()
tools = [asknews_tool]
agent = create_openai_functions_agent(llm, tools, prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
)
agent_executor.invoke({"input": "How is the tech sector being affected by fed policy?"})
```
---------
Co-authored-by: Emre <e@emre.pm>
Please let me know if you see any possible areas of improvement. I would
very much appreciate your constructive criticism if time allows.
**Description:**
- Added a aerospike vector store integration that utilizes
[Aerospike-Vector-Search](https://aerospike.com/products/vector-database-search-llm/)
add-on.
- Added both unit tests and integration tests
- Added a docker compose file for spinning up a test environment
- Added a notebook
**Dependencies:** any dependencies required for this change
- aerospike-vector-search
**Twitter handle:**
- No twitter, you can use my GitHub handle or LinkedIn if you'd like
Thanks!
---------
Co-authored-by: Jesse Schumacher <jschumacher@aerospike.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Closes#20561
This PR fixes MLX LLM stream `AttributeError`.
Recently, `mlx-lm` changed the token decoding logic, which affected the
LC+MLX integration.
Additionally, I made minor fixes such as: docs example broken link and
enforcing pipeline arguments (max_tokens, temp and etc) for invoke.
- **Issue:** #20561
- **Twitter handle:** @Prince_Canuma
Related to #20085
@baskaryan
Thank you for contributing to LangChain!
community:sparkllm[patch]: standardized init args
updated `spark_api_key` so that aliased to `api_key`. Added integration
test for `sparkllm` to test that it continues to set the same underlying
attribute.
updated temperature with Pydantic Field, added to the integration test.
Ran `make format`,`make test`, `make lint`, `make spell_check`