While integrating the xinference_embedding, we observed that the
downloaded dependency package is quite substantial in size. With a focus
on resource optimization and efficiency, if the project requirements are
limited to its vector processing capabilities, we recommend migrating to
the xinference_client package. This package is more streamlined,
significantly reducing the storage space requirements of the project and
maintaining a feature focus, making it particularly suitable for
scenarios that demand lightweight integration. Such an approach not only
boosts deployment efficiency but also enhances the application's
maintainability, rendering it an optimal choice for our current context.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Code:** langchain_community/embeddings/baichuan.py:82
- **Description:** When I make an error using 'baichuan embeddings', the
printed error message is wrapped (there is actually no need to wrap)
```python
# example
from langchain_community.embeddings import BaichuanTextEmbeddings
# error key
BAICHUAN_API_KEY = "sk-xxxxxxxxxxxxx"
embeddings = BaichuanTextEmbeddings(baichuan_api_key=BAICHUAN_API_KEY)
text_1 = "今天天气不错"
query_result = embeddings.embed_query(text_1)
```
![unintended
newline](https://github.com/langchain-ai/langchain/assets/55082429/e1178ce8-62bb-405d-a4af-e3b28eabc158)
**Description:**
This PR introduces chunking logic to the `DeepInfraEmbeddings` class to
handle large batch sizes without exceeding maximum batch size of the
backend. This enhancement ensures that embedding generation processes
large batches by breaking them down into smaller, manageable chunks,
each conforming to the maximum batch size limit.
**Issue:**
Fixes#21189
**Dependencies:**
No new dependencies introduced.
### GPT4AllEmbeddings parameters
---
**Description:**
As of right now the **Embed4All** class inside _GPT4AllEmbeddings_ is
instantiated as it's default which leaves no room to customize the
chosen model and it's behavior. Thus:
- GPT4AllEmbeddings can now be instantiated with custom parameters like
a different model that shall be used.
---------
Co-authored-by: AlexJauchWalser <alexander.jauch-walser@knime.com>
Thank you for contributing to LangChain!
- [ ] **HuggingFaceInferenceAPIEmbeddings**: "Additional Headers"
- Where: langchain, community, embeddings. huggingface.py.
- Community: add additional headers when needed by custom HuggingFace
TEI embedding endpoints. HuggingFaceInferenceAPIEmbeddings"
- [ ] **PR message**: ***Delete this entire checklist*** and replace
with
- **Description:** Adding the `additional_headers` to be passed to
requests library if needed
- **Dependencies:** none
- [ ] **Add tests and docs**: If you're adding a new integration, please
include
1. Tested with locally available TEI endpoints with and without
`additional_headers`
2. Example Usage
```python
embeddings=HuggingFaceInferenceAPIEmbeddings(
api_key=MY_CUSTOM_API_KEY,
api_url=MY_CUSTOM_TEI_URL,
additional_headers={
"Content-Type": "application/json"
}
)
```
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: Massimiliano Pronesti <massimiliano.pronesti@gmail.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Thank you for contributing to LangChain!
- Oracle AI Vector Search
Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
- Oracle AI Vector Search is designed for Artificial Intelligence (AI)
workloads that allows you to query data based on semantics, rather than
keywords. One of the biggest benefit of Oracle AI Vector Search is that
semantic search on unstructured data can be combined with relational
search on business data in one single system. This is not only powerful
but also significantly more effective because you don't need to add a
specialized vector database, eliminating the pain of data fragmentation
between multiple systems.
This Pull Requests Adds the following functionalities
Oracle AI Vector Search : Vector Store
Oracle AI Vector Search : Document Loader
Oracle AI Vector Search : Document Splitter
Oracle AI Vector Search : Summary
Oracle AI Vector Search : Oracle Embeddings
- We have added unit tests and have our own local unit test suite which
verifies all the code is correct. We have made sure to add guides for
each of the components and one end to end guide that shows how the
entire thing runs.
- We have made sure that make format and make lint run clean.
Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.
If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, hwchase17.
---------
Co-authored-by: skmishraoracle <shailendra.mishra@oracle.com>
Co-authored-by: hroyofc <harichandan.roy@oracle.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
## Summary
I ran `ruff check --extend-select RUF100 -n` to identify `# noqa`
comments that weren't having any effect in Ruff, and then `ruff check
--extend-select RUF100 -n --fix` on select files to remove all of the
unnecessary `# noqa: F401` violations. It's possible that these were
needed at some point in the past, but they're not necessary in Ruff
v0.1.15 (used by LangChain) or in the latest release.
Co-authored-by: Erick Friis <erick@langchain.dev>
Issue: When the third-party package is not installed, whenever we need
to `pip install <package>` the ImportError is raised.
But sometimes, the `ValueError` or `ModuleNotFoundError` is raised. It
is bad for consistency.
Change: replaced the `ValueError` or `ModuleNotFoundError` with
`ImportError` when we raise an error with the `pip install <package>`
message.
Note: Ideally, we replace all `try: import... except... raise ... `with
helper functions like `import_aim` or just use the existing
[langchain_core.utils.utils.guard_import](https://api.python.langchain.com/en/latest/utils/langchain_core.utils.utils.guard_import.html#langchain_core.utils.utils.guard_import)
But it would be much bigger refactoring. @baskaryan Please, advice on
this.
**Community: Unify Titan Takeoff Integrations and Adding Embedding
Support**
**Description:**
Titan Takeoff no longer reflects this either of the integrations in the
community folder. The two integrations (TitanTakeoffPro and
TitanTakeoff) where causing confusion with clients, so have moved code
into one place and created an alias for backwards compatibility. Added
Takeoff Client python package to do the bulk of the work with the
requests, this is because this package is actively updated with new
versions of Takeoff. So this integration will be far more robust and
will not degrade as badly over time.
**Issue:**
Fixes bugs in the old Titan integrations and unified the code with added
unit test converge to avoid future problems.
**Dependencies:**
Added optional dependency takeoff-client, all imports still work without
dependency including the Titan Takeoff classes but just will fail on
initialisation if not pip installed takeoff-client
**Twitter**
@MeryemArik9
Thanks all :)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Fix of YandexGPT embeddings.
The current version uses a single `model_name` for queries and
documents, essentially making the `embed_documents` and `embed_query`
methods the same. Yandex has a different endpoint (`model_uri`) for
encoding documents, see
[this](https://yandex.cloud/en/docs/yandexgpt/concepts/embeddings). The
bug may impact retrievers built with `YandexGPTEmbeddings` (for instance
FAISS database as retriever) since they use both `embed_documents` and
`embed_query`.
A simple snippet to test the behaviour:
```python
from langchain_community.embeddings.yandex import YandexGPTEmbeddings
embeddings = YandexGPTEmbeddings()
q_emb = embeddings.embed_query('hello world')
doc_emb = embeddings.embed_documents(['hello world', 'hello world'])
q_emb == doc_emb[0]
```
The response is `True` with the current version and `False` with the
changes I made.
Twitter: @egor_krash
---------
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR should make it easier for linters to do type checking and for IDEs to jump to definition of code.
See #20050 as a template for this PR.
- As a byproduct: Added 3 missed `test_imports`.
- Added missed `SolarChat` in to __init___.py Added it into test_import
ut.
- Added `# type: ignore` to fix linting. It is not clear, why linting
errors appear after ^ changes.
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
## Feature
- Set additional headers in constructor
- Headers will be sent in post request
This feature is useful if deploying Ollama on a cloud service such as
hugging face, which requires authentication tokens to be passed in the
request header.
## Tests
- Test if header is passed
- Test if header is not passed
Similar to https://github.com/langchain-ai/langchain/pull/15881
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
When testing Nomic embeddings --
```
from langchain_community.embeddings import LlamaCppEmbeddings
embd_model_path = "/Users/rlm/Desktop/Code/llama.cpp/models/nomic-embd/nomic-embed-text-v1.Q4_K_S.gguf"
embd_lc = LlamaCppEmbeddings(model_path=embd_model_path)
embedding_lc = embd_lc.embed_query(query)
```
We were seeing this error for strings > a certain size --
```
File ~/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/llama.py:827, in Llama.embed(self, input, normalize, truncate, return_count)
824 s_sizes = []
826 # add to batch
--> 827 self._batch.add_sequence(tokens, len(s_sizes), False)
828 t_batch += n_tokens
829 s_sizes.append(n_tokens)
File ~/miniforge3/envs/llama2/lib/python3.9/site-packages/llama_cpp/_internals.py:542, in _LlamaBatch.add_sequence(self, batch, seq_id, logits_all)
540 self.batch.token[j] = batch[i]
541 self.batch.pos[j] = i
--> 542 self.batch.seq_id[j][0] = seq_id
543 self.batch.n_seq_id[j] = 1
544 self.batch.logits[j] = logits_all
ValueError: NULL pointer access
```
The default `n_batch` of llama-cpp-python's Llama is `512` but we were
explicitly setting it to `8`.
These need to be set to equal for embedding models.
* The embedding.cpp example has an assertion to make sure these are
always equal.
* Apparently this is not being done properly in llama-cpp-python.
With `n_batch` set to 8, if more than 8 tokens are passed the batch runs
out of space and it crashes.
This also explains why the CPU compute buffer size was small:
raw client with default `n_batch=512`
```
llama_new_context_with_model: CPU input buffer size = 3.51 MiB
llama_new_context_with_model: CPU compute buffer size = 21.00 MiB
```
langchain with `n_batch=8`
```
llama_new_context_with_model: CPU input buffer size = 0.04 MiB
llama_new_context_with_model: CPU compute buffer size = 0.33 MiB
```
We can work around this by passing `n_batch=512`, but this will not be
obvious to some users:
```
embedding = LlamaCppEmbeddings(model_path=embd_model_path,
n_batch=512)
```
From discussion w/ @cebtenzzre. Related:
https://github.com/abetlen/llama-cpp-python/issues/1189
Co-authored-by: Bagatur <baskaryan@gmail.com>
Introduction
[Intel® Extension for
Transformers](https://github.com/intel/intel-extension-for-transformers)
is an innovative toolkit designed to accelerate GenAI/LLM everywhere
with the optimal performance of Transformer-based models on various
Intel platforms
Description
adding ITREX runtime embeddings using intel-extension-for-transformers.
added mdx documentation and example notebooks
added embedding import testing.
---------
Signed-off-by: yuwenzho <yuwen.zhou@intel.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** Be more explicit with the `model_kwargs` and
`encode_kwargs` for `HuggingFaceEmbeddings`.
- **Issue:** -
- **Dependencies:** -
I received some reports by my users that they didn't realise that you
could change the default `batch_size` with `HuggingFaceEmbeddings`,
which may be attributed to how the `model_kwargs` and `encode_kwargs`
don't give much information about what you can specify.
I've added some parameter names & links to the Sentence Transformers
documentation to help clear it up. Let me know if you'd rather have
Markdown/Sphinx-style hyperlinks rather than a "bare URL".
- Tom Aarsen
Create a Class which allows to use the "text2vec" open source embedding
model.
It should install the model by running 'pip install -U text2vec'.
Example to call the model through LangChain:
from langchain_community.embeddings.text2vec import Text2vecEmbeddings
embedding = Text2vecEmbeddings()
bookend.embed_documents([
"This is a CoSENT(Cosine Sentence) model.",
"It maps sentences to a 768 dimensional dense vector space.",
])
bookend.embed_query(
"It can be used for text matching or semantic search."
)
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Eugene Yurtsev <eugene@langchain.dev>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
### Prem SDK integration in LangChain
This PR adds the integration with [PremAI's](https://www.premai.io/)
prem-sdk with langchain. User can now access to deployed models
(llms/embeddings) and use it with langchain's ecosystem. This PR adds
the following:
### This PR adds the following:
- [x] Add chat support
- [X] Adding embedding support
- [X] writing integration tests
- [X] writing tests for chat
- [X] writing tests for embedding
- [X] writing unit tests
- [X] writing tests for chat
- [X] writing tests for embedding
- [X] Adding documentation
- [X] writing documentation for chat
- [X] writing documentation for embedding
- [X] run `make test`
- [X] run `make lint`, `make lint_diff`
- [X] Final checks (spell check, lint, format and overall testing)
---------
Co-authored-by: Anindyadeep Sannigrahi <anindyadeepsannigrahi@Anindyadeeps-MacBook-Pro.local>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Description: adds support for langchain_cohere
---------
Co-authored-by: Harry M <127103098+harry-cohere@users.noreply.github.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
#18040 forces `fastembed>2.0`, and this causes dependency conflicts with
the new `unstructured` package (different `onnxruntime`). There may be
other dependency conflicts.. The only way to use
`langchain-community>=0.0.28` is rollback to `unstructured 0.10.X`. But
new `unstructured` contains many fixes.
This PR allows to use both `fastembed` `v1` and `v2`.
How to reproduce:
`pyproject.toml`:
```toml
[tool.poetry]
name = "depstest"
version = "0.0.0"
description = "test"
authors = ["<dev@example.org>"]
[tool.poetry.dependencies]
python = ">=3.10,<3.12"
langchain-community = "^0.0.28"
fastembed = "^0.2.0"
unstructured = {extras = ["pdf"], version = "^0.12"}
```
```bash
$ poetry lock
```
Co-authored-by: Sergey Kozlov <sergey.kozlov@ludditelabs.io>
- **Description:** Add embedding instruction to
HuggingFaceBgeEmbeddings, so that it can be compatible with nomic and
other models that need embedding instruction.
---------
Co-authored-by: Tao Wu <tao.wu@rwth-aachen.de>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Follow up on https://github.com/langchain-ai/langchain/pull/17467.
- Update all references to the Elasticsearch classes to use the partners
package.
- Deprecate community classes.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
* **Description:** adds `LlamafileEmbeddings` class implementation for
generating embeddings using
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
Includes related unit tests and notebook showing example usage.
* **Issue:** N/A
* **Dependencies:** N/A
## Description
Updates the `langchain_community.embeddings.fastembed` provider as per
the recent updates to [`FastEmbed`](https://github.com/qdrant/fastembed)
library.