Add Multi-CSV/DF support in CSV and DataFrame Toolkits
* CSV and DataFrame toolkits now accept list of CSVs/DFs
* Add default prompts for many dataframes in `pandas_dataframe` toolkit
Fixes#1958
Potentially fixes#4423
## Testing
* Add single and multi-dataframe integration tests for
`pandas_dataframe` toolkit with permutations of `include_df_in_prompt`
* Add single and multi-CSV integration tests for csv toolkit
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
# Add C Transformers for GGML Models
I created Python bindings for the GGML models:
https://github.com/marella/ctransformers
Currently it supports GPT-2, GPT-J, GPT-NeoX, LLaMA, MPT, etc. See
[Supported
Models](https://github.com/marella/ctransformers#supported-models).
It provides a unified interface for all models:
```python
from langchain.llms import CTransformers
llm = CTransformers(model='/path/to/ggml-gpt-2.bin', model_type='gpt2')
print(llm('AI is going to'))
```
It can be used with models hosted on the Hugging Face Hub:
```py
llm = CTransformers(model='marella/gpt-2-ggml')
```
It supports streaming:
```py
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
llm = CTransformers(model='marella/gpt-2-ggml', callbacks=[StreamingStdOutCallbackHandler()])
```
Please see [README](https://github.com/marella/ctransformers#readme) for
more details.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
zep-python's sync methods no longer need an asyncio wrapper. This was
causing issues with FastAPI deployment.
Zep also now supports putting and getting of arbitrary message metadata.
Bump zep-python version to v0.30
Remove nest-asyncio from Zep example notebooks.
Modify tests to include metadata.
---------
Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
Co-authored-by: Daniel Chalef <131175+danielchalef@users.noreply.github.com>
# Bibtex integration
Wrap bibtexparser to retrieve a list of docs from a bibtex file.
* Get the metadata from the bibtex entries
* `page_content` get from the local pdf referenced in the `file` field
of the bibtex entry using `pymupdf`
* If no valid pdf file, `page_content` set to the `abstract` field of
the bibtex entry
* Support Zotero flavour using regex to get the file path
* Added usage example in
`docs/modules/indexes/document_loaders/examples/bibtex.ipynb`
---------
Co-authored-by: Sébastien M. Popoff <sebastien.popoff@espci.fr>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add Joplin document loader
[Joplin](https://joplinapp.org/) is an open source note-taking app.
Joplin has a [REST API](https://joplinapp.org/api/references/rest_api/)
for accessing its local database. The proposed `JoplinLoader` uses the
API to retrieve all notes in the database and their metadata. Joplin
needs to be installed and running locally, and an access token is
required.
- The PR includes an integration test.
- The PR includes an example notebook.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
## Description
The html structure of readthedocs can differ. Currently, the html tag is
hardcoded in the reader, and unable to fit into some cases. This pr
includes the following changes:
1. Replace `find_all` with `find` because we just want one tag.
2. Provide `custom_html_tag` to the loader.
3. Add tests for readthedoc loader
4. Refactor code
## Issues
See more in https://github.com/hwchase17/langchain/pull/2609. The
problem was not completely fixed in that pr.
---------
Signed-off-by: byhsu <byhsu@linkedin.com>
Co-authored-by: byhsu <byhsu@linkedin.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# OpanAI finetuned model giving zero tokens cost
Very simple fix to the previously committed solution to allowing
finetuned Openai models.
Improves #5127
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Beam
Calls the Beam API wrapper to deploy and make subsequent calls to an
instance of the gpt2 LLM in a cloud deployment. Requires installation of
the Beam library and registration of Beam Client ID and Client Secret.
Additional calls can then be made through the instance of the large
language model in your code or by calling the Beam API.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Vectara Integration
This PR provides integration with Vectara. Implemented here are:
* langchain/vectorstore/vectara.py
* tests/integration_tests/vectorstores/test_vectara.py
* langchain/retrievers/vectara_retriever.py
And two IPYNB notebooks to do more testing:
* docs/modules/chains/index_examples/vectara_text_generation.ipynb
* docs/modules/indexes/vectorstores/examples/vectara.ipynb
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add MosaicML inference endpoints
This PR adds support in langchain for MosaicML inference endpoints. We
both serve a select few open source models, and allow customers to
deploy their own models using our inference service. Docs are here
(https://docs.mosaicml.com/en/latest/inference.html), and sign up form
is here (https://forms.mosaicml.com/demo?utm_source=langchain). I'm not
intimately familiar with the details of langchain, or the contribution
process, so please let me know if there is anything that needs fixing or
this is the wrong way to submit a new integration, thanks!
I'm also not sure what the procedure is for integration tests. I have
tested locally with my api key.
## Who can review?
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This PR introduces a new module, `elasticsearch_embeddings.py`, which
provides a wrapper around Elasticsearch embedding models. The new
ElasticsearchEmbeddings class allows users to generate embeddings for
documents and query texts using a [model deployed in an Elasticsearch
cluster](https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-model-ref.html#ml-nlp-model-ref-text-embedding).
### Main features:
1. The ElasticsearchEmbeddings class initializes with an Elasticsearch
connection object and a model_id, providing an interface to interact
with the Elasticsearch ML client through
[infer_trained_model](https://elasticsearch-py.readthedocs.io/en/v8.7.0/api.html?highlight=trained%20model%20infer#elasticsearch.client.MlClient.infer_trained_model)
.
2. The `embed_documents()` method generates embeddings for a list of
documents, and the `embed_query()` method generates an embedding for a
single query text.
3. The class supports custom input text field names in case the deployed
model expects a different field name than the default `text_field`.
4. The implementation is compatible with any model deployed in
Elasticsearch that generates embeddings as output.
### Benefits:
1. Simplifies the process of generating embeddings using Elasticsearch
models.
2. Provides a clean and intuitive interface to interact with the
Elasticsearch ML client.
3. Allows users to easily integrate Elasticsearch-generated embeddings.
Related issue https://github.com/hwchase17/langchain/issues/3400
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add AzureCognitiveServicesToolkit to call Azure Cognitive Services
API: achieve some multimodal capabilities
This PR adds a toolkit named AzureCognitiveServicesToolkit which bundles
the following tools:
- AzureCogsImageAnalysisTool: calls Azure Cognitive Services image
analysis API to extract caption, objects, tags, and text from images.
- AzureCogsFormRecognizerTool: calls Azure Cognitive Services form
recognizer API to extract text, tables, and key-value pairs from
documents.
- AzureCogsSpeech2TextTool: calls Azure Cognitive Services speech to
text API to transcribe speech to text.
- AzureCogsText2SpeechTool: calls Azure Cognitive Services text to
speech API to synthesize text to speech.
This toolkit can be used to process image, document, and audio inputs.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Improve TextSplitter.split_documents, collect page_content and
metadata in one iteration
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
@eyurtsev In the case where documents is a generator that can only be
iterated once making this change is a huge help. Otherwise a silent
issue happens where metadata is empty for all documents when documents
is a generator. So we expand the argument from `List[Document]` to
`Union[Iterable[Document], Sequence[Document]]`
---------
Co-authored-by: Steven Tartakovsky <tartakovsky.developer@gmail.com>
Implementation is similar to search_distance and where_filter
# adds 'additional' support to Weaviate queries
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
OpenLM is a zero-dependency OpenAI-compatible LLM provider that can call
different inference endpoints directly via HTTP. It implements the
OpenAI Completion class so that it can be used as a drop-in replacement
for the OpenAI API. This changeset utilizes BaseOpenAI for minimal added
code.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add Mastodon toots loader.
Loader works either with public toots, or Mastodon app credentials. Toot
text and user info is loaded.
I've also added integration test for this new loader as it works with
public data, and a notebook with example output run now.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# PowerBI major refinement in working of tool and tweaks in the rest
I've gained some experience with more complex sets and the earlier
implementation had too many tries by the agent to create DAX, so
refactored the code to run the LLM to create dax based on a question and
then immediately run the same against the dataset, with retries and a
prompt that includes the error for the retry. This works much better!
Also did some other refactoring of the inner workings, making things
clearer, more concise and faster.
# Row-wise cosine similarity between two equal-width matrices and return
the max top_k score and index, the score all greater than
threshold_score.
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Enhance the code to support SSL authentication for Elasticsearch when
using the VectorStore module, as previous versions did not provide this
capability.
@dev2049
---------
Co-authored-by: caidong <zhucaidong1992@gmail.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
This is a highly optimized update to the pull request
https://github.com/hwchase17/langchain/pull/3269
Summary:
1) Added ability to MRKL agent to self solve the ValueError(f"Could not
parse LLM output: `{llm_output}`") error, whenever llm (especially
gpt-3.5-turbo) does not follow the format of MRKL Agent, while returning
"Action:" & "Action Input:".
2) The way I am solving this error is by responding back to the llm with
the messages "Invalid Format: Missing 'Action:' after 'Thought:'" &
"Invalid Format: Missing 'Action Input:' after 'Action:'" whenever
Action: and Action Input: are not present in the llm output
respectively.
For a detailed explanation, look at the previous pull request.
New Updates:
1) Since @hwchase17 , requested in the previous PR to communicate the
self correction (error) message, using the OutputParserException, I have
added new ability to the OutputParserException class to store the
observation & previous llm_output in order to communicate it to the next
Agent's prompt. This is done, without breaking/modifying any of the
functionality OutputParserException previously performs (i.e.
OutputParserException can be used in the same way as before, without
passing any observation & previous llm_output too).
---------
Co-authored-by: Deepak S V <svdeepak99@users.noreply.github.com>
Update to pull request https://github.com/hwchase17/langchain/pull/3215
Summary:
1) Improved the sanitization of query (using regex), by removing python
command (since gpt-3.5-turbo sometimes assumes python console as a
terminal, and runs python command first which causes error). Also
sometimes 1 line python codes contain single backticks.
2) Added 7 new test cases.
For more details, view the previous pull request.
---------
Co-authored-by: Deepak S V <svdeepak99@users.noreply.github.com>
Let user inspect the token ids in addition to getting th enumber of tokens
---------
Co-authored-by: Zach Schillaci <40636930+zachschillaci27@users.noreply.github.com>
Extract the methods specific to running an LLM or Chain on a dataset to
separate utility functions.
This simplifies the client a bit and lets us separate concerns of LCP
details from running examples (e.g., for evals)
### Submit Multiple Files to the Unstructured API
Enables batching multiple files into a single Unstructured API requests.
Support for requests with multiple files was added to both
`UnstructuredAPIFileLoader` and `UnstructuredAPIFileIOLoader`. Note that
if you submit multiple files in "single" mode, the result will be
concatenated into a single document. We recommend using this feature in
"elements" mode.
### Testing
The following should load both documents, using two of the example docs
from the integration tests folder.
```python
from langchain.document_loaders import UnstructuredAPIFileLoader
file_paths = ["examples/layout-parser-paper.pdf", "examples/whatsapp_chat.txt"]
loader = UnstructuredAPIFileLoader(
file_paths=file_paths,
api_key="FAKE_API_KEY",
strategy="fast",
mode="elements",
)
docs = loader.load()
```
# Improve Evernote Document Loader
When exporting from Evernote you may export more than one note.
Currently the Evernote loader concatenates the content of all notes in
the export into a single document and only attaches the name of the
export file as metadata on the document.
This change ensures that each note is loaded as an independent document
and all available metadata on the note e.g. author, title, created,
updated are added as metadata on each document.
It also uses an existing optional dependency of `html2text` instead of
`pypandoc` to remove the need to download the pandoc application via
`download_pandoc()` to be able to use the `pypandoc` python bindings.
Fixes#4493
Co-authored-by: Mike McGarry <mike.mcgarry@finbourne.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Adds "IN" metadata filter for pgvector to all checking for set
presence
PGVector currently supports metadata filters of the form:
```
{"filter": {"key": "value"}}
```
which will return documents where the "key" metadata field is equal to
"value".
This PR adds support for metadata filters of the form:
```
{"filter": {"key": { "IN" : ["list", "of", "values"]}}}
```
Other vector stores support this via an "$in" syntax. I chose to use
"IN" to match postgres' syntax, though happy to switch.
Tested locally with PGVector and ChatVectorDBChain.
@dev2049
---------
Co-authored-by: jade@spanninglabs.com <jade@spanninglabs.com>
# Powerbi API wrapper bug fix + integration tests
- Bug fix by removing `TYPE_CHECKING` in in utilities/powerbi.py
- Added integration test for power bi api in
utilities/test_powerbi_api.py
- Added integration test for power bi agent in
agent/test_powerbi_agent.py
- Edited .env.examples to help set up power bi related environment
variables
- Updated demo notebook with working code in
docs../examples/powerbi.ipynb - AzureOpenAI -> ChatOpenAI
Notes:
Chat models (gpt3.5, gpt4) are much more capable than davinci at writing
DAX queries, so that is important to getting the agent to work properly.
Interestingly, gpt3.5-turbo needed the examples=DEFAULT_FEWSHOT_EXAMPLES
to write consistent DAX queries, so gpt4 seems necessary as the smart
llm.
Fixes#4325
## Before submitting
Azure-core and Azure-identity are necessary dependencies
check integration tests with the following:
`pytest tests/integration_tests/utilities/test_powerbi_api.py`
`pytest tests/integration_tests/agent/test_powerbi_agent.py`
You will need a power bi account with a dataset id + table name in order
to test. See .env.examples for details.
## Who can review?
@hwchase17
@vowelparrot
---------
Co-authored-by: aditya-pethe <adityapethe1@gmail.com>
# Add Spark SQL support
* Add Spark SQL support. It can connect to Spark via building a
local/remote SparkSession.
* Include a notebook example
I tried some complicated queries (window function, table joins), and the
tool works well.
Compared to the [Spark Dataframe
agent](https://python.langchain.com/en/latest/modules/agents/toolkits/examples/spark.html),
this tool is able to generate queries across multiple tables.
---------
# Your PR Title (What it does)
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
---------
Co-authored-by: Gengliang Wang <gengliang@apache.org>
Co-authored-by: Mike W <62768671+skcoirz@users.noreply.github.com>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
Co-authored-by: UmerHA <40663591+UmerHA@users.noreply.github.com>
Co-authored-by: 张城铭 <z@hyperf.io>
Co-authored-by: assert <zhangchengming@kkguan.com>
Co-authored-by: blob42 <spike@w530>
Co-authored-by: Yuekai Zhang <zhangyuekai@foxmail.com>
Co-authored-by: Richard He <he.yucheng@outlook.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Co-authored-by: Leonid Ganeline <leo.gan.57@gmail.com>
Co-authored-by: Alexey Nominas <60900649+Chae4ek@users.noreply.github.com>
Co-authored-by: elBarkey <elbarkey@gmail.com>
Co-authored-by: Davis Chase <130488702+dev2049@users.noreply.github.com>
Co-authored-by: Jeffrey D <1289344+verygoodsoftwarenotvirus@users.noreply.github.com>
Co-authored-by: so2liu <yangliu35@outlook.com>
Co-authored-by: Viswanadh Rayavarapu <44315599+vishwa-rn@users.noreply.github.com>
Co-authored-by: Chakib Ben Ziane <contact@blob42.xyz>
Co-authored-by: Daniel Chalef <131175+danielchalef@users.noreply.github.com>
Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
Co-authored-by: Jari Bakken <jari.bakken@gmail.com>
Co-authored-by: escafati <scafatieugenio@gmail.com>
# Zep Retriever - Vector Search Over Chat History with the Zep Long-term
Memory Service
More on Zep: https://github.com/getzep/zep
Note: This PR is related to and relies on
https://github.com/hwchase17/langchain/pull/4834. I did not want to
modify the `pyproject.toml` file to add the `zep-python` dependency a
second time.
Co-authored-by: Daniel Chalef <daniel.chalef@private.org>
# TextLoader auto detect encoding and enhanced exception handling
- Add an option to enable encoding detection on `TextLoader`.
- The detection is done using `chardet`
- The loading is done by trying all detected encodings by order of
confidence or raise an exception otherwise.
### New Dependencies:
- `chardet`
Fixes#4479
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @eyurtsev
---------
Co-authored-by: blob42 <spike@w530>
# Add bs4 html parser
* Some minor refactors
* Extract the bs4 html parsing code from the bs html loader
* Move some tests from integration tests to unit tests
# Add generic document loader
* This PR adds a generic document loader which can assemble a loader
from a blob loader and a parser
* Adds a registry for parsers
* Populate registry with a default mimetype based parser
## Expected changes
- Parsing involves loading content via IO so can be sped up via:
* Threading in sync
* Async
- The actual parsing logic may be computatinoally involved: may need to
figure out to add multi-processing support
- May want to add suffix based parser since suffixes are easier to
specify in comparison to mime types
## Before submitting
No notebooks yet, we first need to get a few of the basic parsers up
(prior to advertising the interface)
# Remove unnecessary comment
Remove unnecessary comment accidentally included in #4800
## Before submitting
- no test
- no document
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
Previously, the client expected a strict 'prompt' or 'messages' format
and wouldn't permit running a chat model or llm on prompts or messages
(respectively).
Since many datasets may want to specify custom key: string , relax this
requirement.
Also, add support for running a chat model on raw prompts and LLM on
chat messages through their respective fallbacks.
# Your PR Title (What it does)
<!--
Thank you for contributing to LangChain! Your PR will appear in our next
release under the title you set. Please make sure it highlights your
valuable contribution.
Replace this with a description of the change, the issue it fixes (if
applicable), and relevant context. List any dependencies required for
this change.
After you're done, someone will review your PR. They may suggest
improvements. If no one reviews your PR within a few days, feel free to
@-mention the same people again, as notifications can get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
<!-- If you're adding a new integration, include an integration test and
an example notebook showing its use! -->
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
<!-- For a quicker response, figure out the right person to tag with @
@hwchase17 - project lead
Tracing / Callbacks
- @agola11
Async
- @agola11
DataLoaders
- @eyurtsev
Models
- @hwchase17
- @agola11
Agents / Tools / Toolkits
- @vowelparrot
VectorStores / Retrievers / Memory
- @dev2049
-->
**Feature**: This PR adds `from_template_file` class method to
BaseStringMessagePromptTemplate. This is useful to help user to create
message prompt templates directly from template files, including
`ChatMessagePromptTemplate`, `HumanMessagePromptTemplate`,
`AIMessagePromptTemplate` & `SystemMessagePromptTemplate`.
**Tests**: Unit tests have been added in this PR.
Co-authored-by: charosen <charosen@bupt.cn>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>