Replaced all `from langchain.callbacks` into `from
langchain_core.callbacks` .
Changes in the `langchain` and `langchain_experimental`
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
## Amazon Personalize support on Langchain
This PR is a successor to this PR -
https://github.com/langchain-ai/langchain/pull/13216
This PR introduces an integration with [Amazon
Personalize](https://aws.amazon.com/personalize/) to help you to
retrieve recommendations and use them in your natural language
applications. This integration provides two new components:
1. An `AmazonPersonalize` client, that provides a wrapper around the
Amazon Personalize API.
2. An `AmazonPersonalizeChain`, that provides a chain to pull in
recommendations using the client, and then generating the response in
natural language.
We have added this to langchain_experimental since there was feedback
from the previous PR about having this support in experimental rather
than the core or community extensions.
Here is some sample code to explain the usage.
```python
from langchain_experimental.recommenders import AmazonPersonalize
from langchain_experimental.recommenders import AmazonPersonalizeChain
from langchain.llms.bedrock import Bedrock
recommender_arn = "<insert_arn>"
client=AmazonPersonalize(
credentials_profile_name="default",
region_name="us-west-2",
recommender_arn=recommender_arn
)
bedrock_llm = Bedrock(
model_id="anthropic.claude-v2",
region_name="us-west-2"
)
chain = AmazonPersonalizeChain.from_llm(
llm=bedrock_llm,
client=client
)
response = chain({'user_id': '1'})
```
Reviewer: @3coins