Commit Graph

1749 Commits

Author SHA1 Message Date
AmitSinghShorthillsAI
2b06792c81
Fixing spelling mistakes in fallbacks.ipynb (#9376)
Fix spelling errors in the text: 'Therefore' and 'Retrying

I want to stress that your feedback is invaluable to us and is genuinely
cherished.
With gratitude,
@baskaryan  @hwchase17
2023-08-18 10:33:47 -04:00
PuneetDhimanShorthillsAI
61e4a06447
Corrected Sentence in router.ipynb (#9377)
Added missing question marks in the lines in the router.ipynb

@baskaryan @hwchase17
2023-08-18 10:32:17 -04:00
呂安
ead04487fd
doc: make install from source more clearer (#9433)
Description: if just `pip install -e .` it will not install anything, we
have to find the right directory to do `pip install -e .`
2023-08-18 10:30:55 -04:00
Leonid Ganeline
edcb03943e
👀 docs: updated dependents (#9426)
Updated statistics (the previous statistics was taken 1+month ago).
A lot of new dependents and more starts.
2023-08-18 10:15:39 -04:00
Holmodi
89a8121eaa
Fix a dead loop bug caused by assigning two variables with opposite values. (#9447)
- Description: Fix a dead loop bug caused by assigning two variables
with opposite values.
2023-08-18 10:12:53 -04:00
Lance Martin
589927e9e1
Update figure in OSS model guide (#9399) 2023-08-17 15:09:21 -07:00
Bagatur
5d60ced7b3
pydantic compatibility guide fix (#9418) 2023-08-17 12:33:20 -07:00
Bagatur
0c4683ebcc
Revert "Update compatibility guide for pydantic (#9396)" (#9417) 2023-08-17 12:14:32 -07:00
Eugene Yurtsev
b11c233304
Update compatibility guide for pydantic (#9396)
Use langchain.pydantic_v1 instead of pydantic_v1
2023-08-17 12:09:18 -07:00
Leonid Kuligin
019aa04b06
fixed a pal chain reference (#9387)
#9386

Co-authored-by: Leonid Kuligin <kuligin@google.com>
2023-08-17 13:02:49 -04:00
Sanskar Tanwar
c194828be0
Fixed Typo in Fallbacks.ipynb (#9373)
Removed extra "the" in the sentence about the chicken crossing the road
in fallbacks.ipynb. The sentence now reads correctly: "Why did the
chicken cross the road?" This resolves the grammatical error and
improves the overall quality of the content.

@baskaryan , @hinthornw , @hwchase17
2023-08-17 02:06:49 -07:00
AashutoshPathakShorthillsAI
c71afb46d1
Corrected Sentence in .ipynb File (#9372)
Fixed grammatical errors in the sentence by repositioning the word "are"
for improved clarity and readability.

 @baskaryan @hwchase17 @hinthornw
2023-08-17 02:06:43 -07:00
Akshay Tripathi
de8dfde7f7
Corrected Grammatical errors in tutorials.mdx (#9358)
I want to extend my heartfelt gratitude to the creator for masterfully
crafting this remarkable application. 🙌 I am truly impressed by the
meticulous attention to grammar and spelling in the documentation, which
undoubtedly contributes to a polished and seamless reader experience.

As always, your feedback holds immense value and is greatly appreciated.

@baskaryan , @hwchase17
2023-08-17 01:55:21 -07:00
Md Nazish Arman
e842131425
Fixed Grammatical errors in tutorials.mdx (#9359)
I want to convey my deep appreciation to the creator for their expert
craftsmanship in developing this exceptional application. 👏 The
remarkable dedication to upholding impeccable grammar and spelling in
the documentation significantly enhances the polished and seamless
experience for readers.

I want to stress that your feedback is invaluable to us and is genuinely
cherished.

With gratitude,
@baskaryan, @hwchase17
2023-08-17 01:55:11 -07:00
AnujMauryaShorthillsAI
6dedd94ba4
Update "Langchain" to "LangChain" in the tutorials.mdx file (#9361)
In this commit, I have made a modification to the term "Langchain" to
correctly reflect the project's name as "LangChain". This change ensures
consistency and accuracy throughout the codebase and documentation.

@baskaryan , @hwchase17
2023-08-17 01:54:57 -07:00
Adarsh Shrivastav
c5e23293f8
Corrected Typo in MultiPromptChain Example in router.ipynb (#9362)
Refined the example in router.ipynb by addressing a minor typographical
error. The typo "rins" has been corrected to "rains" in the code snippet
that demonstrates the usage of the MultiPromptChain. This change ensures
accuracy and consistency in the provided code example.

This improvement enhances the readability and correctness of the
notebook, making it easier for users to understand and follow the
demonstration. The commit aims to maintain the quality and accuracy of
the content within the repository.

Thank you for your attention to detail, and please review the change at
your convenience.

@baskaryan , @hwchase17
2023-08-17 01:54:43 -07:00
AbhishekYadavShorthillsAI
90d7c55343
Fix Typo in "community.md" (#9360)
Corrected a typographical error in the "community.md" file by removing
an extra word from the sentence.

@baskaryan , @hwchase17
2023-08-17 01:54:13 -07:00
Angel Luis
2e8733cf54
Fix typo in huggingface_textgen_inference.ipynb (#9313)
Replaced incorrect `stream` parameter by `streaming` on Integrations
docs.
2023-08-16 16:22:21 -07:00
Lance Martin
b04e472acf
Open source LLM guide (#9266)
Guide for using open source LLMs locally.
2023-08-16 16:18:31 -07:00
Eugene Yurtsev
090411842e
Fix API reference docs (#9321)
Do not document members nested within any private component
2023-08-16 15:56:54 -07:00
Eugene Yurtsev
0f9f213833
Pydantic Compatibility (#9327)
Pydantic Compatibility Guidelines for migration plan + debugging
2023-08-16 15:55:53 -07:00
Chandler May
15f1af8ed6
Fix variable case in code snippet in docs (#9311)
- Description: Fix a minor variable naming inconsistency in a code
snippet in the docs
  - Issue: N/A
  - Dependencies: none
  - Tag maintainer: N/A
  - Twitter handle: N/A
2023-08-16 13:34:46 -07:00
Michael Bianco
23928a3311
docs: remove multiple code blocks from comma-separated docs (#9323) 2023-08-16 11:51:58 -07:00
Navanit Dubey
3e6cea46e2
Guide import readable json (#9291) 2023-08-16 00:49:01 -07:00
axiangcoding
63601551b1
fix(llms): improve the ernie chat model (#9289)
- Description: improve the ernie chat model.
   - fix missing kwargs to payload
   - new test cases
   - add some debug level log
   - improve description
- Issue: None
- Dependencies: None
- Tag maintainer: @baskaryan
2023-08-16 00:48:42 -07:00
Daniel Chalef
1d55141c50
zep/new ZepVectorStore (#9159)
- new ZepVectorStore class
- ZepVectorStore unit tests
- ZepVectorStore demo notebook
- update zep-python to ~1.0.2

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-16 00:23:07 -07:00
Bagatur
b9ca5cc5ea
update guide import (#9279) 2023-08-15 17:01:06 -07:00
Bagatur
afba2be3dc
update openai functions docs (#9278) 2023-08-15 17:00:56 -07:00
Bagatur
9abf60acb6
Bagatur/vectara regression (#9276)
Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
2023-08-15 16:19:46 -07:00
Xiaoyu Xee
b30f449dae
Add dashvector vectorstore (#9163)
## Description
Add `Dashvector` vectorstore for langchain

- [dashvector quick
start](https://help.aliyun.com/document_detail/2510223.html)
- [dashvector package description](https://pypi.org/project/dashvector/)

## How to use
```python
from langchain.vectorstores.dashvector import DashVector

dashvector = DashVector.from_documents(docs, embeddings)
```

---------

Co-authored-by: smallrain.xuxy <smallrain.xuxy@alibaba-inc.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 16:19:30 -07:00
Bagatur
bfbb97b74c
Bagatur/deeplake docs fixes (#9275)
Co-authored-by: adilkhan <adilkhan.sarsen@nu.edu.kz>
2023-08-15 15:56:36 -07:00
Kunj-2206
1b3942ba74
Added BittensorLLM (#9250)
Description: Adding NIBittensorLLM via Validator Endpoint to langchain
llms
Tag maintainer: @Kunj-2206

Maintainer responsibilities:
    Models / Prompts: @hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 15:40:52 -07:00
Toshish Jawale
852722ea45
Improvements in Nebula LLM (#9226)
- Description: Added improvements in Nebula LLM to perform auto-retry;
more generation parameters supported. Conversation is no longer required
to be passed in the LLM object. Examples are updated.
  - Issue: N/A
  - Dependencies: N/A
  - Tag maintainer: @baskaryan 
  - Twitter handle: symbldotai

---------

Co-authored-by: toshishjawale <toshish@symbl.ai>
2023-08-15 15:33:07 -07:00
Bagatur
1aae77f26f
fix context nb (#9267) 2023-08-15 12:53:37 -07:00
Alex Gamble
cf17c58b47
Update documentation for the Context integration with new URL and features (#9259)
Update documentation and URLs for the Langchain Context integration.

We've moved from getcontext.ai to context.ai \o/

Thanks in advance for the review!
2023-08-15 11:38:34 -07:00
Joseph McElroy
5e9687a196
Elasticsearch self-query retriever (#9248)
Now with ElasticsearchStore VectorStore merged, i've added support for
the self-query retriever.

I've added a notebook also to demonstrate capability. I've also added
unit tests.

**Credit**
@elastic and @phoey1 on twitter.
2023-08-15 10:53:43 -04:00
Anthony Mahanna
0a04e63811
docs: Update ArangoDB Links (#9251)
ready for review 

- mdx link update
- colab link update
2023-08-15 07:43:47 -07:00
Hech
4b505060bd
fix: max_marginal_relevance_search and docs in Dingo (#9244) 2023-08-15 01:06:06 -07:00
axiangcoding
664ff28cba
feat(llms): support ernie chat (#9114)
Description: support ernie (文心一言) chat model
Related issue: #7990
Dependencies: None
Tag maintainer: @baskaryan
2023-08-15 01:05:46 -07:00
fanyou-wbd
5e43768f61
docs: update LlamaCpp max_tokens args (#9238)
This PR updates documentations only, `max_length` should be `max_tokens`
according to latest LlamaCpp API doc:
https://api.python.langchain.com/en/latest/llms/langchain.llms.llamacpp.LlamaCpp.html
2023-08-15 00:50:20 -07:00
Bagatur
a8aa1aba1c
nit (#9243) 2023-08-15 00:49:12 -07:00
Bagatur
68d8f73698
consolidate redirects (#9242) 2023-08-15 00:48:23 -07:00
Joshua Sundance Bailey
ef0664728e
ArcGISLoader update (#9240)
Small bug fixes and added metadata based on user feedback. This PR is
from the author of https://github.com/langchain-ai/langchain/pull/8873 .
2023-08-14 23:44:29 -07:00
Joseph McElroy
eac4ddb4bb
Elasticsearch Store Improvements (#8636)
Todo:
- [x] Connection options (cloud, localhost url, es_connection) support
- [x] Logging support
- [x] Customisable field support
- [x] Distance Similarity support 
- [x] Metadata support
  - [x] Metadata Filter support 
- [x] Retrieval Strategies
  - [x] Approx
  - [x] Approx with Hybrid
  - [x] Exact
  - [x] Custom 
  - [x] ELSER (excluding hybrid as we are working on RRF support)
- [x] integration tests 
- [x] Documentation

👋 this is a contribution to improve Elasticsearch integration with
Langchain. Its based loosely on the changes that are in master but with
some notable changes:

## Package name & design improvements
The import name is now `ElasticsearchStore`, to aid discoverability of
the VectorStore.

```py
## Before
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch, ElasticKnnSearch

## Now
from langchain.vectorstores.elasticsearch import ElasticsearchStore
```

## Retrieval Strategy support
Before we had a number of classes, depending on the strategy you wanted.
`ElasticKnnSearch` for approx, `ElasticVectorSearch` for exact / brute
force.

With `ElasticsearchStore` we have retrieval strategies:

### Approx Example
Default strategy for the vast majority of developers who use
Elasticsearch will be inferring the embeddings from outside of
Elasticsearch. Uses KNN functionality of _search.

```py
        texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index"
        )
        output = docsearch.similarity_search("foo", k=1)
```

### Approx, with hybrid
Developers who want to search, using both the embedding and the text
bm25 match. Its simple to enable.

```py
 texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True)
        )
        output = docsearch.similarity_search("foo", k=1)
```

### Approx, with `query_model_id`
Developers who want to infer within Elasticsearch, using the model
loaded in the ml node.

This relies on the developer to setup the pipeline and index if they
wish to embed the text in Elasticsearch. Example of this in the test.

```py
 texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ApproxRetrievalStrategy(
                query_model_id="sentence-transformers__all-minilm-l6-v2"
            ),
        )
        output = docsearch.similarity_search("foo", k=1)
```

### I want to provide my own custom Elasticsearch Query
You might want to have more control over the query, to perform
multi-phase retrieval such as LTR, linearly boosting on document
parameters like recently updated or geo-distance. You can do this with
`custom_query_fn`

```py
        def my_custom_query(query_body: dict, query: str) -> dict:
            return {"query": {"match": {"text": {"query": "bar"}}}}

        texts = ["foo", "bar", "baz"]
        docsearch = ElasticsearchStore.from_texts(
            texts, FakeEmbeddings(), **elasticsearch_connection, index_name=index_name
        )
        docsearch.similarity_search("foo", k=1, custom_query=my_custom_query)

```

### Exact Example
Developers who have a small dataset in Elasticsearch, dont want the cost
of indexing the dims vs tradeoff on cost at query time. Uses
script_score.

```py
        texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ExactRetrievalStrategy(),
        )
        output = docsearch.similarity_search("foo", k=1)
```

### ELSER Example
Elastic provides its own sparse vector model called ELSER. With these
changes, its really easy to use. The vector store creates a pipeline and
index thats setup for ELSER. All the developer needs to do is configure,
ingest and query via langchain tooling.

```py
texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.SparseVectorStrategy(),
        )
        output = docsearch.similarity_search("foo", k=1)

```

## Architecture
In future, we can introduce new strategies and allow us to not break bwc
as we evolve the index / query strategy.

## Credit
On release, could you credit @elastic and @phoey1 please? Thank you!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 23:42:35 -07:00
Harrison Chase
71d5b7c9bf
Harrison/fallbacks (#9233)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 18:27:38 -07:00
Lance Martin
41279a3ae1
Move self-check use case to "more" section (#9137)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 18:27:28 -07:00
Lance Martin
22858d99b5
Move code-writing use case to "more" section (#9134)
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 18:27:19 -07:00
Bagatur
249d7d06a2
adapter doc nit (#9234) 2023-08-14 18:26:37 -07:00
Lance Martin
969e1683de
Move graph use case to "more" section (#8997)
Clean `use_cases` by moving the `GraphDB` to `integrations`.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 17:20:38 -07:00
Lance Martin
d0a0d560ad
Minor formatting on Web Research Use Case (#9221) 2023-08-14 16:29:36 -07:00