Based on my experiments, the newline isn't always there, so we can make
the regex slightly more robust by allowing an optional newline after the
bacticks
This PR is opinionated.
- Moved `Embedding models` item to place after `LLMs` and `Chat model`,
so all items with models are together.
- Renamed `Text embedding models` to `Embedding models`. Now, it is
shorter and easier to read. `Text` is obvious from context. The same as
the `Text LLMs` vs. `LLMs` (we also have multi-modal LLMs).
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
The `Partner libs` menu is not sorted. Now it is long enough, and items
should be sorted to simplify a package search.
- Sorted items in the `Partner libs` menu
- **Description:**
before the change I've got
1. propagate InferenceClientException to the caller.
2. stop grpc receiver thread on exception
```
for token in result_queue:
> result_str += token
E TypeError: can only concatenate str (not "InferenceServerException") to str
../../langchain_nvidia_trt/llms.py:207: TypeError
```
And stream thread keeps running.
after the change request thread stops correctly and caller got a root
cause exception:
```
E tritonclient.utils.InferenceServerException: [request id: 4529729] expected number of inputs between 2 and 3 but got 10 inputs for model 'vllm_model'
../../langchain_nvidia_trt/llms.py:205: InferenceServerException
```
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** [t.me/mkhl_spb](https://t.me/mkhl_spb)
I'm not sure about test coverage. Should I setup deep mocks or there's a
kind of triton stub via testcontainers or so.
### Description
support load any github file content based on file extension.
Why not use [git
loader](https://python.langchain.com/docs/integrations/document_loaders/git#load-existing-repository-from-disk)
?
git loader clones the whole repo even only interested part of files,
that's too heavy. This GithubFileLoader only downloads that you are
interested files.
### Twitter handle
my twitter: @shufanhaotop
---------
Co-authored-by: Hao Fan <h_fan@apple.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description:**
With this modification, users can customize the `FORMAT_INSTRUCTIONS`
template, allowing them to create their own prompts
As it is happening in
[this](https://github.com/langchain-ai/langchain/issues/10721) issue,
the `FORMAT_INSTRUCTIONS` is not customizable for the output parser,
unless you create your own class `ConvoOutputParser`. To avoid this, a
modification was done, creating a `format_instruction` variable that
users can customize with ease after initialize the agent.
For example:
```
agent = initialize_agent(
agent = AgentType.CHAT_CONVERSATIONAL_REACT_DESCRIPTION,
tools = tools,
llm = llm_agent,
verbose = True,
max_iterations = 3,
early_stopping_method = 'generate',
memory = b_w_memory,
handle_parsing_errors = True,
agent_kwargs={
'system_message':PREFIX,
'human_message':SUFFIX,
'template_tool_response':TEMPLATE_TOOL_RESPONSE,
}
)
agent.agent.output_parser.format_instructions = "MY CUSTOM FORMAT INSTRUCTIONS"
print(agent.agent.output_parser.get_format_instructions())
MY CUSTOM FORMAT INSTRUCTIONS
```
Other parameters like `system_message`, `human_message`, or
`template_tool_response` are already customizable and with this PR, the
last parameter `FORMAT_INSTRUCTIONS` in
`langchain.agents.conversational_chat.prompt` can be modified.
**Issue:**
https://github.com/langchain-ai/langchain/issues/10721
**Dependencies:**
No new dependencies required for this change
**Twitter handle:**
With my github user is enough. Thanks
I hope you accept my PR.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Please tag this issue with `nvidia_genai`**
- **Description:** Added new Runnables for integration NVIDIA Riva into
LCEL chains for Automatic Speech Recognition (ASR) and Text To Speech
(TTS).
- **Issue:** N/A
- **Dependencies:** To use these runnables, the NVIDIA Riva client
libraries are required. It they are not installed, an error will be
raised instructing how to install them. The Runnables can be safely
imported without the riva client libraries.
- **Twitter handle:** N/A
All of the Riva Runnables are inside a single folder in the Utilities
module. In this folder are four files:
- common.py - Contains all code that is common to both TTS and ASR
- stream.py - Contains a class representing an audio stream that allows
the end user to put data into the stream like a queue.
- asr.py - Contains the RivaASR runnable
- tts.py - Contains the RivaTTS runnable
The following Python function is an example of creating a chain that
makes use of both of these Runnables:
```python
def create(
config: Configuration,
audio_encoding: RivaAudioEncoding,
sample_rate: int,
audio_channels: int = 1,
) -> Runnable[ASRInputType, TTSOutputType]:
"""Create a new instance of the chain."""
_LOGGER.info("Instantiating the chain.")
# create the riva asr client
riva_asr = RivaASR(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
encoding=audio_encoding,
audio_channel_count=audio_channels,
sample_rate_hertz=sample_rate,
profanity_filter=config.riva_asr.profanity_filter,
enable_automatic_punctuation=config.riva_asr.enable_automatic_punctuation,
language_code=config.riva_asr.language_code,
)
# create the prompt template
prompt = PromptTemplate.from_template("{user_input}")
# model = ChatOpenAI()
model = ChatNVIDIA(model="mixtral_8x7b") # type: ignore
# create the riva tts client
riva_tts = RivaTTS(
url=str(config.riva_asr.service.url),
ssl_cert=config.riva_asr.service.ssl_cert,
output_directory=config.riva_tts.output_directory,
language_code=config.riva_tts.language_code,
voice_name=config.riva_tts.voice_name,
)
# construct and return the chain
return {"user_input": riva_asr} | prompt | model | riva_tts # type: ignore
```
The following code is an example of creating a new audio stream for
Riva:
```python
input_stream = AudioStream(maxsize=1000)
# Send bytes into the stream
for chunk in audio_chunks:
await input_stream.aput(chunk)
input_stream.close()
```
The following code is an example of how to execute the chain with
RivaASR and RivaTTS
```python
output_stream = asyncio.Queue()
while not input_stream.complete:
async for chunk in chain.astream(input_stream):
output_stream.put(chunk)
```
Everything should be async safe and thread safe. Audio data can be put
into the input stream while the chain is running without interruptions.
---------
Co-authored-by: Hayden Wolff <hwolff@nvidia.com>
Co-authored-by: Hayden Wolff <hwolff@Haydens-Laptop.local>
Co-authored-by: Hayden Wolff <haydenwolff99@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:** Link to the Brave Website added to the
`brave-search.ipynb` notebook.
This notebook is shown in the docs as an example for the brave tool.
**Issue:** There was to reference on where / how to get an api key
**Dependencies:** none
**Twitter handle:** not for this one :)
- **Description:** docs: update StreamlitCallbackHandler example.
- **Issue:** None
- **Dependencies:** None
I have updated the example for StreamlitCallbackHandler in the
documentation bellow.
https://python.langchain.com/docs/integrations/callbacks/streamlit
Previously, the example used `initialize_agent`, which has been
deprecated, so I've updated it to use `create_react_agent` instead. Many
langchain users are likely searching examples of combining
`create_react_agent` or `openai_tools_agent_chain` with
StreamlitCallbackHandler. I'm sure this update will be really helpful
for them!
Unfortunately, writing unit tests for this example is difficult, so I
have not written any tests. I have run this code in a standalone Python
script file and ensured it runs correctly.
- **Description:** Ensure the `LlamaGrammar` custom type is always
available when instantiating a `LlamaCpp` LLM
- **Issue:** #16994
- **Dependencies:** None
- **Twitter handle:** @fpaupier
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
As described in issue #17060, in the case in which text has only one
sentence the following function fails. Checking for that and adding a
return case fixed the issue.
```python
def split_text(self, text: str) -> List[str]:
"""Split text into multiple components."""
# Splitting the essay on '.', '?', and '!'
single_sentences_list = re.split(r"(?<=[.?!])\s+", text)
sentences = [
{"sentence": x, "index": i} for i, x in enumerate(single_sentences_list)
]
sentences = combine_sentences(sentences)
embeddings = self.embeddings.embed_documents(
[x["combined_sentence"] for x in sentences]
)
for i, sentence in enumerate(sentences):
sentence["combined_sentence_embedding"] = embeddings[i]
distances, sentences = calculate_cosine_distances(sentences)
start_index = 0
# Create a list to hold the grouped sentences
chunks = []
breakpoint_percentile_threshold = 95
breakpoint_distance_threshold = np.percentile(
distances, breakpoint_percentile_threshold
) # If you want more chunks, lower the percentile cutoff
indices_above_thresh = [
i for i, x in enumerate(distances) if x > breakpoint_distance_threshold
] # The indices of those breakpoints on your list
# Iterate through the breakpoints to slice the sentences
for index in indices_above_thresh:
# The end index is the current breakpoint
end_index = index
# Slice the sentence_dicts from the current start index to the end index
group = sentences[start_index : end_index + 1]
combined_text = " ".join([d["sentence"] for d in group])
chunks.append(combined_text)
# Update the start index for the next group
start_index = index + 1
# The last group, if any sentences remain
if start_index < len(sentences):
combined_text = " ".join([d["sentence"] for d in sentences[start_index:]])
chunks.append(combined_text)
return chunks
```
Co-authored-by: Giulio Zani <salamanderxing@Giulios-MBP.homenet.telecomitalia.it>
- **Description:** Add relevant type annotations for relevant session
and query objects to resolve mypy errors when `# type: ignore` comments
are removed.
- **Issue:** #17048
- **Dependencies:** None,
- **Twitter handle:** [clesiemo3](https://twitter.com/clesiemo3)
I attempted to solve the `UpsertionRecord` ignore but it would require
added a deprecated plugin or moving completely to sqlalchemy 2.0+ from
my understanding. I'm assuming this is not something desired at this
point in time.
- **Description:** "load HTML **form** web URLs" should be "load HTML
**from** web URLs"? 🤔
- **Issue:** Typo
- **Dependencies:** Nope
- **Twitter handle:** n0vad3v