**Description:**
This integrates Infinispan as a vectorstore.
Infinispan is an open-source key-value data grid, it can work as single
node as well as distributed.
Vector search is supported since release 15.x
For more: [Infinispan Home](https://infinispan.org)
Integration tests are provided as well as a demo notebook
This is a PR that adds a dangerous load parameter to force users to opt in to use pickle.
This is a PR that's meant to raise user awareness that the pickling module is involved.
This is a patch for `CVE-2024-2057`:
https://www.cve.org/CVERecord?id=CVE-2024-2057
This affects users that:
* Use the `TFIDFRetriever`
* Attempt to de-serialize it from an untrusted source that contains a
malicious payload
- **Description:** Databricks SerDe uses cloudpickle instead of pickle
when serializing a user-defined function transform_input_fn since pickle
does not support functions defined in `__main__`, and cloudpickle
supports this.
- **Dependencies:** cloudpickle>=2.0.0
Added a unit test.
### Description
Changed the value specified for `content_key` in JSONLoader from a
single key to a value based on jq schema.
I created [similar
PR](https://github.com/langchain-ai/langchain/pull/11255) before, but it
has several conflicts because of the architectural change associated
stable version release, so I re-create this PR to fit new architecture.
### Why
For json data like the following, specify `.data[].attributes.message`
for page_content and `.data[].attributes.id` or
`.data[].attributes.attributes. tags`, etc., the `content_key` must also
parse the json structure.
<details>
<summary>sample json data</summary>
```json
{
"data": [
{
"attributes": {
"message": "message1",
"tags": [
"tag1"
]
},
"id": "1"
},
{
"attributes": {
"message": "message2",
"tags": [
"tag2"
]
},
"id": "2"
}
]
}
```
</details>
<details>
<summary>sample code</summary>
```python
def metadata_func(record: dict, metadata: dict) -> dict:
metadata["source"] = None
metadata["id"] = record.get("id")
metadata["tags"] = record["attributes"].get("tags")
return metadata
sample_file = "sample1.json"
loader = JSONLoader(
file_path=sample_file,
jq_schema=".data[]",
content_key=".attributes.message", ## content_key is parsable into jq schema
is_content_key_jq_parsable=True, ## this is added parameter
metadata_func=metadata_func
)
data = loader.load()
data
```
</details>
### Dependencies
none
### Twitter handle
[kzk_maeda](https://twitter.com/kzk_maeda)
Neo4j tools use particular node labels and relationship types to store
metadata, but are irrelevant for text2cypher or graph generation, so we
want to ignore them in the schema representation.
Deprecates the old langchain-hub repository. Does *not* deprecate the
new https://smith.langchain.com/hub
@PinkDraconian has correctly raised that in the event someone is loading
unsanitized user input into the `try_load_from_hub` function, they have
the ability to load files from other locations in github than the
hwchase17/langchain-hub repository.
This PR adds some more path checking to that function and deprecates the
functionality in favor of the hub built into LangSmith.
- **Description:** finishes adding the you.com functionality including:
- add async functions to utility and retriever
- add the You.com Tool
- add async testing for utility, retriever, and tool
- add a tool integration notebook page
- **Dependencies:** any dependencies required for this change
- **Twitter handle:** @scottnath
Description:
This pull request introduces several enhancements for Azure Cosmos
Vector DB, primarily focused on improving caching and search
capabilities using Azure Cosmos MongoDB vCore Vector DB. Here's a
summary of the changes:
- **AzureCosmosDBSemanticCache**: Added a new cache implementation
called AzureCosmosDBSemanticCache, which utilizes Azure Cosmos MongoDB
vCore Vector DB for efficient caching of semantic data. Added
comprehensive test cases for AzureCosmosDBSemanticCache to ensure its
correctness and robustness. These tests cover various scenarios and edge
cases to validate the cache's behavior.
- **HNSW Vector Search**: Added HNSW vector search functionality in the
CosmosDB Vector Search module. This enhancement enables more efficient
and accurate vector searches by utilizing the HNSW (Hierarchical
Navigable Small World) algorithm. Added corresponding test cases to
validate the HNSW vector search functionality in both
AzureCosmosDBSemanticCache and AzureCosmosDBVectorSearch. These tests
ensure the correctness and performance of the HNSW search algorithm.
- **LLM Caching Notebook** - The notebook now includes a comprehensive
example showcasing the usage of the AzureCosmosDBSemanticCache. This
example highlights how the cache can be employed to efficiently store
and retrieve semantic data. Additionally, the example provides default
values for all parameters used within the AzureCosmosDBSemanticCache,
ensuring clarity and ease of understanding for users who are new to the
cache implementation.
@hwchase17,@baskaryan, @eyurtsev,
* **Description:** adds `LlamafileEmbeddings` class implementation for
generating embeddings using
[llamafile](https://github.com/Mozilla-Ocho/llamafile)-based models.
Includes related unit tests and notebook showing example usage.
* **Issue:** N/A
* **Dependencies:** N/A
Current implementation doesn't have an indexed property that would
optimize the import. I have added a `baseEntityLabel` parameter that
allows you to add a secondary node label, which has an indexed id
`property`. By default, the behaviour is identical to previous version.
Since multi-labeled nodes are terrible for text2cypher, I removed the
secondary label from schema representation object and string, which is
used in text2cypher.
This PR makes `cohere_api_key` in `llms/cohere` a SecretStr, so that the
API Key is not leaked when `Cohere.cohere_api_key` is represented as a
string.
---------
Signed-off-by: Arun <arun@arun.blog>
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
- **Description**:
[`bigdl-llm`](https://github.com/intel-analytics/BigDL) is a library for
running LLM on Intel XPU (from Laptop to GPU to Cloud) using
INT4/FP4/INT8/FP8 with very low latency (for any PyTorch model). This PR
adds bigdl-llm integrations to langchain.
- **Issue**: NA
- **Dependencies**: `bigdl-llm` library
- **Contribution maintainer**: @shane-huang
Examples added:
- docs/docs/integrations/llms/bigdl.ipynb
Description-
- Changed the GitHub endpoint as existing was not working and giving 404
not found error
- Also the existing function was failing if file_filter is not passed as
the tree api return all paths including directory as well, and when
get_file_content was iterating over these path, the function was failing
for directory as the api was returning list of files inside the
directory, so added a condition to ignore the paths if it a directory
- Fixes this issue -
https://github.com/langchain-ai/langchain/issues/17453
Co-authored-by: Radhika Bansal <Radhika.Bansal@veritas.com>
- **Description:** The current embedchain implementation seems to handle
document metadata differently than done in the current implementation of
langchain and a KeyError is thrown. I would love for someone else to
test this...
---------
Co-authored-by: KKUGLER <kai.kugler@mercedes-benz.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Deshraj Yadav <deshraj@gatech.edu>
Sometimes, you want to use various parameters in the retrieval query of
Neo4j Vector to personalize/customize results. Before, when there were
only predefined chains, it didn't really make sense. Now that it's all
about custom chains and LCEL, it is worth adding since users can inject
any params they wish at query time. Isn't prone to SQL injection-type
attacks since we use parameters and not concatenating strings.
**Description:**
In this PR, I am adding a `PolygonFinancials` tool, which can be used to
get financials data for a given ticker. The financials data is the
fundamental data that is found in income statements, balance sheets, and
cash flow statements of public US companies.
**Twitter**:
[@virattt](https://twitter.com/virattt)
- **Description:** A generic document loader adapter for SQLAlchemy on
top of LangChain's `SQLDatabaseLoader`.
- **Needed by:** https://github.com/crate-workbench/langchain/pull/1
- **Depends on:** GH-16655
- **Addressed to:** @baskaryan, @cbornet, @eyurtsev
Hi from CrateDB again,
in the same spirit like GH-16243 and GH-16244, this patch breaks out
another commit from https://github.com/crate-workbench/langchain/pull/1,
in order to reduce the size of this patch before submitting it, and to
separate concerns.
To accompany the SQLAlchemy adapter implementation, the patch includes
integration tests for both SQLite and PostgreSQL. Let me know if
corresponding utility resources should be added at different spots.
With kind regards,
Andreas.
### Software Tests
```console
docker compose --file libs/community/tests/integration_tests/document_loaders/docker-compose/postgresql.yml up
```
```console
cd libs/community
pip install psycopg2-binary
pytest -vvv tests/integration_tests -k sqldatabase
```
```
14 passed
```
![image](https://github.com/langchain-ai/langchain/assets/453543/42be233c-eb37-4c76-a830-474276e01436)
---------
Co-authored-by: Andreas Motl <andreas.motl@crate.io>
**Description**: This PR adds support for using the [LLMLingua project
](https://github.com/microsoft/LLMLingua) especially the LongLLMLingua
(Enhancing Large Language Model Inference via Prompt Compression) as a
document compressor / transformer.
The LLMLingua project is an interesting project that can greatly improve
RAG system by compressing prompts and contexts while keeping their
semantic relevance.
**Issue**: https://github.com/microsoft/LLMLingua/issues/31
**Dependencies**: [llmlingua](https://pypi.org/project/llmlingua/)
@baskaryan
---------
Co-authored-by: Ayodeji Ayibiowu <ayodeji.ayibiowu@getinge.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** Callback handler to integrate fiddler with langchain.
This PR adds the following -
1. `FiddlerCallbackHandler` implementation into langchain/community
2. Example notebook `fiddler.ipynb` for usage documentation
[Internal Tracker : FDL-14305]
**Issue:**
NA
**Dependencies:**
- Installation of langchain-community is unaffected.
- Usage of FiddlerCallbackHandler requires installation of latest
fiddler-client (2.5+)
**Twitter handle:** @fiddlerlabs @behalder
Co-authored-by: Barun Halder <barun@fiddler.ai>
- **Description:**
- Add DocumentManager class, which is a nosql record manager.
- In order to use index and aindex in
libs/langchain/langchain/indexes/_api.py, DocumentManager inherits
RecordManager.
- Also I added the MongoDB implementation of Document Manager too.
- **Dependencies:** pymongo, motor
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** Add DocumentManager class, which is a no sql record
manager. To use index method and aindex method in indexes._api.py,
Document Manager inherits RecordManager.Add the MongoDB implementation
of Document Manager.
- **Dependencies:** pymongo, motor
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
---------
Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
**Description:** Initial pull request for Kinetica LLM wrapper
**Issue:** N/A
**Dependencies:** No new dependencies for unit tests. Integration tests
require gpudb, typeguard, and faker
**Twitter handle:** @chad_juliano
Note: There is another pull request for Kinetica vectorstore. Ultimately
we would like to make a partner package but we are starting with a
community contribution.
- **Description:** In order to override the bool value of
"fetch_schema_from_transport" in the GraphQLAPIWrapper, a
"fetch_schema_from_transport" value needed to be added to the
"_EXTRA_OPTIONAL_TOOLS" dictionary in load_tools in the "graphql" key.
The parameter "fetch_schema_from_transport" must also be passed in to
the GraphQLAPIWrapper to allow reading of the value when creating the
client. Passing as an optional parameter is probably best to avoid
breaking changes. This change is necessary to support GraphQL instances
that do not support fetching schema, such as TigerGraph. More info here:
[TigerGraph GraphQL Schema
Docs](https://docs.tigergraph.com/graphql/current/schema)
- **Threads handle:** @zacharytoliver
---------
Co-authored-by: Zachary Toliver <zt10191991@hotmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
In this pull request, we introduce the add_images method to the
SingleStoreDB vector store class, expanding its capabilities to handle
multi-modal embeddings seamlessly. This method facilitates the
incorporation of image data into the vector store by associating each
image's URI with corresponding document content, metadata, and either
pre-generated embeddings or embeddings computed using the embed_image
method of the provided embedding object.
the change includes integration tests, validating the behavior of the
add_images. Additionally, we provide a notebook showcasing the usage of
this new method.
---------
Co-authored-by: Volodymyr Tkachuk <vtkachuk-ua@singlestore.com>
Description:
In this PR, I am adding a PolygonTickerNews Tool, which can be used to
get the latest news for a given ticker / stock.
Twitter handle: [@virattt](https://twitter.com/virattt)
**Description**: CogniSwitch focusses on making GenAI usage more
reliable. It abstracts out the complexity & decision making required for
tuning processing, storage & retrieval. Using simple APIs documents /
URLs can be processed into a Knowledge Graph that can then be used to
answer questions.
**Dependencies**: No dependencies. Just network calls & API key required
**Tag maintainer**: @hwchase17
**Twitter handle**: https://github.com/CogniSwitch
**Documentation**: Please check
`docs/docs/integrations/toolkits/cogniswitch.ipynb`
**Tests**: The usual tool & toolkits tests using `test_imports.py`
PR has passed linting and testing before this submission.
---------
Co-authored-by: Saicharan Sridhara <145636106+saiCogniswitch@users.noreply.github.com>
Hi, I'm from the LanceDB team.
Improves LanceDB integration by making it easier to use - now you aren't
required to create tables manually and pass them in the constructor,
although that is still backward compatible.
Bug fix - pandas was being used even though it's not a dependency for
LanceDB or langchain
PS - this issue was raised a few months ago but lost traction. It is a
feature improvement for our users kindly review this , Thanks !