Commit Graph

218 Commits

Author SHA1 Message Date
Harrison Chase
44c8d8a9ac
move serpapi wrapper (#1199)
Co-authored-by: Tim Asp <707699+timothyasp@users.noreply.github.com>
2023-02-20 21:15:45 -08:00
Naveen Tatikonda
0118706fd6
Add Support for OpenSearch Vector database (#1191)
### Description
This PR adds a wrapper which adds support for the OpenSearch vector
database. Using opensearch-py client we are ingesting the embeddings of
given text into opensearch cluster using Bulk API. We can perform the
`similarity_search` on the index using the 3 popular searching methods
of OpenSearch k-NN plugin:

- `Approximate k-NN Search` use approximate nearest neighbor (ANN)
algorithms from the [nmslib](https://github.com/nmslib/nmslib),
[faiss](https://github.com/facebookresearch/faiss), and
[Lucene](https://lucene.apache.org/) libraries to power k-NN search.
- `Script Scoring` extends OpenSearch’s script scoring functionality to
execute a brute force, exact k-NN search.
- `Painless Scripting` adds the distance functions as painless
extensions that can be used in more complex combinations. Also, supports
brute force, exact k-NN search like Script Scoring.

### Issues Resolved 
https://github.com/hwchase17/langchain/issues/1054

---------

Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
2023-02-20 18:39:34 -08:00
Andrew White
c5015d77e2
Allow k to be higher than doc size in max_marginal_relevance_search (#1187)
Fixes issue #1186. For some reason, #1117 didn't seem to fix it.
2023-02-20 16:39:13 -08:00
Harrison Chase
9d6d8f85da
Harrison/self hosted runhouse (#1154)
Co-authored-by: Donny Greenberg <dongreenberg2@gmail.com>
Co-authored-by: John Dagdelen <jdagdelen@users.noreply.github.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
Co-authored-by: Andrew White <white.d.andrew@gmail.com>
Co-authored-by: Peng Qu <82029664+pengqu123@users.noreply.github.com>
Co-authored-by: Matt Robinson <mthw.wm.robinson@gmail.com>
Co-authored-by: jeff <tangj1122@gmail.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MacBook-Pro.local>
Co-authored-by: zanderchase <zander@unfold.ag>
Co-authored-by: Charles Frye <cfrye59@gmail.com>
Co-authored-by: zanderchase <zanderchase@gmail.com>
Co-authored-by: Shahriar Tajbakhsh <sh.tajbakhsh@gmail.com>
Co-authored-by: Stefan Keselj <skeselj@princeton.edu>
Co-authored-by: Francisco Ingham <fpingham@gmail.com>
Co-authored-by: Dhruv Anand <105786647+dhruv-anand-aintech@users.noreply.github.com>
Co-authored-by: cragwolfe <cragcw@gmail.com>
Co-authored-by: Anton Troynikov <atroyn@users.noreply.github.com>
Co-authored-by: William FH <13333726+hinthornw@users.noreply.github.com>
Co-authored-by: Oliver Klingefjord <oliver@klingefjord.com>
Co-authored-by: blob42 <contact@blob42.xyz>
Co-authored-by: blob42 <spike@w530>
Co-authored-by: Enrico Shippole <henryshippole@gmail.com>
Co-authored-by: Ibis Prevedello <ibiscp@gmail.com>
Co-authored-by: jped <jonathanped@gmail.com>
Co-authored-by: Justin Torre <justintorre75@gmail.com>
Co-authored-by: Ivan Vendrov <ivan@anthropic.com>
Co-authored-by: Sasmitha Manathunga <70096033+mmz-001@users.noreply.github.com>
Co-authored-by: Ankush Gola <9536492+agola11@users.noreply.github.com>
Co-authored-by: Matt Robinson <mrobinson@unstructuredai.io>
Co-authored-by: Jeff Huber <jeffchuber@gmail.com>
Co-authored-by: Akshay <64036106+akshayvkt@users.noreply.github.com>
Co-authored-by: Andrew Huang <jhuang16888@gmail.com>
Co-authored-by: rogerserper <124558887+rogerserper@users.noreply.github.com>
Co-authored-by: seanaedmiston <seane999@gmail.com>
Co-authored-by: Hasegawa Yuya <52068175+Hase-U@users.noreply.github.com>
Co-authored-by: Ivan Vendrov <ivendrov@gmail.com>
Co-authored-by: Chen Wu (吴尘) <henrychenwu@cmu.edu>
Co-authored-by: Dennis Antela Martinez <dennis.antela@gmail.com>
Co-authored-by: Maxime Vidal <max.vidal@hotmail.fr>
Co-authored-by: Rishabh Raizada <110235735+rishabh-ti@users.noreply.github.com>
2023-02-19 09:53:45 -08:00
Noah Gundotra
8c5fbab72d
[Integration Tests] Cast fake embeddings to ALL float values (#1102)
Pydantic validation breaks tests for example (`test_qdrant.py`) because
fake embeddings contain an integer.

This PR casts the embeddings array to all floats.

Now the `qdrant` test passes, `poetry run pytest
tests/integration_tests/vectorstores/test_qdrant.py`
2023-02-17 15:18:09 -08:00
yakigac
1ed708391e
Fix a bug that shows "KeyError 'items'" (#1118)
Fix KeyError 'items' when no result found.

## Problem

When no result found for a query, google search crashed with `KeyError
'items'`.

## Solution

I added a check for an empty response before accessing the 'items' key.
It will handle the case correctly.

## Other

my twitter: yakigac
(I don't mind even if you don't mention me for this PR. But just because
last time my real name was shout out :) )
2023-02-17 13:04:02 -08:00
Hasegawa Yuya
e08961ab25
Fixed openai embeddings to be safe by batching them based on token size calculation. (#991)
I modified the logic of the batch calculation for embedding according to
this cookbook

https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
2023-02-15 23:02:32 -08:00
seanaedmiston
f0a258555b
Support similarity search by vector (in FAISS) (#961)
Alternate implementation to PR #960 Again - only FAISS is implemented.
If accepted can add this to other vectorstores or leave as
NotImplemented? Suggestions welcome...
2023-02-15 22:50:00 -08:00
rogerserper
e46cd3b7db
Google Search API integration with serper.dev (wrapper, tests, docs, … (#909)
Adds Google Search integration with [Serper](https://serper.dev) a
low-cost alternative to SerpAPI (10x cheaper + generous free tier).
Includes documentation, tests and examples. Hopefully I am not missing
anything.

Developers can sign up for a free account at
[serper.dev](https://serper.dev) and obtain an api key.

## Usage

```python
from langchain.utilities import GoogleSerperAPIWrapper
from langchain.llms.openai import OpenAI
from langchain.agents import initialize_agent, Tool

import os
os.environ["SERPER_API_KEY"] = ""
os.environ['OPENAI_API_KEY'] = ""

llm = OpenAI(temperature=0)
search = GoogleSerperAPIWrapper()
tools = [
    Tool(
        name="Intermediate Answer",
        func=search.run
    )
]

self_ask_with_search = initialize_agent(tools, llm, agent="self-ask-with-search", verbose=True)
self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")
```

### Output
```
Entering new AgentExecutor chain...
 Yes.
Follow up: Who is the reigning men's U.S. Open champion?
Intermediate answer: Current champions Carlos Alcaraz, 2022 men's singles champion.
Follow up: Where is Carlos Alcaraz from?
Intermediate answer: El Palmar, Spain
So the final answer is: El Palmar, Spain

> Finished chain.

'El Palmar, Spain'
```
2023-02-15 22:47:17 -08:00
Ankush Gola
caa8e4742e
Enable streaming for OpenAI LLM (#986)
* Support a callback `on_llm_new_token` that users can implement when
`OpenAI.streaming` is set to `True`
2023-02-14 15:06:14 -08:00
Harrison Chase
88bebb4caa
Harrison/llm integrations (#1039)
Co-authored-by: jped <jonathanped@gmail.com>
Co-authored-by: Justin Torre <justintorre75@gmail.com>
Co-authored-by: Ivan Vendrov <ivan@anthropic.com>
2023-02-13 22:06:25 -08:00
Enrico Shippole
f30dcc6359
Add GooseAI, CerebriumAI, Petals, ForefrontAI (#981)
Add GooseAI, CerebriumAI, Petals, ForefrontAI
2023-02-13 21:20:19 -08:00
Anton Troynikov
d43d430d86
Chroma persistence (#1028)
This PR adds persistence to the Chroma vector store.

Users can supply a `persist_directory` with any of the `Chroma` creation
methods. If supplied, the store will be automatically persisted at that
directory.

If a user creates a new `Chroma` instance with the same persistence
directory, it will get loaded up automatically. If they use `from_texts`
or `from_documents` in this way, the documents will be loaded into the
existing store.

There is the chance of some funky behavior if the user passes a
different embedding function from the one used to create the collection
- we will make this easier in future updates. For now, we log a warning.
2023-02-13 21:09:06 -08:00
Anton Troynikov
78abd277ff
Chroma in LangChain (#1010)
Chroma is a simple to use, open-source, zero-config, zero setup
vectorstore.

Simply `pip install chromadb`, and you're good to go. 

Out-of-the-box Chroma is suitable for most LangChain workloads, but is
highly flexible. I tested to 1M embs on my M1 mac, with out issues and
reasonably fast query times.

Look out for future releases as we integrate more Chroma features with
LangChain!
2023-02-12 17:43:48 -08:00
Harrison Chase
c64f98e2bb
Harrison/format agent instructions (#973)
Co-authored-by: Andrew White <white.d.andrew@gmail.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
Co-authored-by: Peng Qu <82029664+pengqu123@users.noreply.github.com>
2023-02-10 10:07:26 -08:00
Harrison Chase
91c6cea227
Harrison/batch embeds (#972)
Co-authored-by: John Dagdelen <jdagdelen@users.noreply.github.com>
Co-authored-by: Harrison Chase <harrisonchase@Harrisons-MBP.attlocal.net>
2023-02-10 06:59:50 -08:00
Ankush Gola
bc7e56e8df
Add asyncio support for LLM (OpenAI), Chain (LLMChain, LLMMathChain), and Agent (#841)
Supporting asyncio in langchain primitives allows for users to run them
concurrently and creates more seamless integration with
asyncio-supported frameworks (FastAPI, etc.)

Summary of changes:

**LLM**
* Add `agenerate` and `_agenerate`
* Implement in OpenAI by leveraging `client.Completions.acreate`

**Chain**
* Add `arun`, `acall`, `_acall`
* Implement them in `LLMChain` and `LLMMathChain` for now

**Agent**
* Refactor and leverage async chain and llm methods
* Add ability for `Tools` to contain async coroutine
* Implement async SerpaPI `arun`

Create demo notebook.

Open questions:
* Should all the async stuff go in separate classes? I've seen both
patterns (keeping the same class and having async and sync methods vs.
having class separation)
2023-02-07 21:21:57 -08:00
Harrison Chase
bc53c928fc
Harrison/athropic (#921)
Co-authored-by: Mike Lambert <mlambert@gmail.com>
Co-authored-by: mrbean <sam@you.com>
Co-authored-by: mrbean <43734688+sam-h-bean@users.noreply.github.com>
Co-authored-by: Ivan Vendrov <ivendrov@gmail.com>
2023-02-06 22:29:25 -08:00
Harrison Chase
1e56879d38
Harrison/save faiss (#916)
Co-authored-by: Shrey Joshi <shreyjoshi2004@gmail.com>
2023-02-06 21:44:50 -08:00
Harrison Chase
ba5a2f06b9
Harrison/inference endpoint (#861)
Co-authored-by: Eno Reyes <enoreyes@gmail.com>
2023-02-06 18:14:25 -08:00
Kevin Huo
31b054f69d
Add pinecone integration test (#911)
Basic integration test for pinecone
2023-02-06 18:13:35 -08:00
Harrison Chase
3f48eed5bd
Harrison/milvus (#856)
Signed-off-by: Filip Haltmayer <filip.haltmayer@zilliz.com>
Signed-off-by: Frank Liu <frank.liu@zilliz.com>
Co-authored-by: Filip Haltmayer <81822489+filip-halt@users.noreply.github.com>
Co-authored-by: Frank Liu <frank@frankzliu.com>
2023-02-02 22:05:47 -08:00
kahkeng
4a8f5cdf4b
Add alternative token-based text splitter (#816)
This does not involve a separator, and will naively chunk input text at
the appropriate boundaries in token space.

This is helpful if we have strict token length limits that we need to
strictly follow the specified chunk size, and we can't use aggressive
separators like spaces to guarantee the absence of long strings.

CharacterTextSplitter will let these strings through without splitting
them, which could cause overflow errors downstream.

Splitting at arbitrary token boundaries is not ideal but is hopefully
mitigated by having a decent overlap quantity. Also this results in
chunks which has exact number of tokens desired, instead of sometimes
overcounting if we concatenate shorter strings.

Potentially also helps with #528.
2023-02-02 19:55:13 -08:00
Harrison Chase
23d5f64bda
Harrison/ngram example (#846)
Co-authored-by: Sean Spriggens <ssprigge@syr.edu>
2023-02-02 09:44:42 -08:00
Harrison Chase
d564308e0f
rfc: instruct embeddings (#811)
Co-authored-by: seanaedmiston <seane999@gmail.com>
2023-02-02 08:44:02 -08:00
Harrison Chase
7b4882a2f4
Harrison/tf embeddings (#817)
Co-authored-by: Ryohei Kuroki <10434946+yakigac@users.noreply.github.com>
2023-01-31 00:00:08 -08:00
dham
e04b063ff4
add faiss local saving/loading (#676)
- This uses the faiss built-in `write_index` and `load_index` to save
and load faiss indexes locally
- Also fixes #674
- The save/load functions also use the faiss library, so I refactored
the dependency into a function
2023-01-21 16:08:14 -08:00
Harrison Chase
0b204d8c21
Harrison/quadrant (#665)
Co-authored-by: Kacper Łukawski <kacperlukawski@users.noreply.github.com>
2023-01-20 09:45:01 -08:00
Harrison Chase
4d4cff0530
Harrison/cohere experimental (#638)
Co-authored-by: inyourhead <44607279+xettrisomeman@users.noreply.github.com>
2023-01-17 22:28:55 -08:00
Harrison Chase
ffc7e04d44
Harrison/wolfram alpha (#579)
Co-authored-by: Nicolas <nicolascamara29@gmail.com>
2023-01-11 05:52:19 -08:00
Harrison Chase
0072686aab
Harrison/new search engine (#477)
Co-authored-by: Nicolas <nicolascamara29@gmail.com>
2022-12-30 08:06:57 -05:00
Harrison Chase
f8b605293f
Harrison/improve memory (#432)
add AI prefix

add new type of memory

Co-authored-by: Jason <chisanch@usc.edu>
2022-12-27 08:23:51 -05:00
Harrison Chase
cf98f219f9
Harrison/tools exp (#372) 2022-12-18 21:51:23 -05:00
Harrison Chase
3474f39e21
Harrison/improve cache (#368)
make it so everything goes through generate, which removes the need for
two types of caches
2022-12-18 16:22:42 -05:00
Harrison Chase
a7084ad6e4
Harrison/version 0040 (#366) 2022-12-17 07:53:22 -08:00
mrbean
50257fce59
Support Streaming Tokens from OpenAI (#364)
https://github.com/hwchase17/langchain/issues/363

@hwchase17 how much does this make you want to cry?
2022-12-17 07:02:58 -08:00
mrbean
fe6695b9e7
Add HuggingFacePipeline LLM (#353)
https://github.com/hwchase17/langchain/issues/354

Add support for running your own HF pipeline locally. This would allow
you to get a lot more dynamic with what HF features and models you
support since you wouldn't be beholden to what is hosted in HF hub. You
could also do stuff with HF Optimum to quantize your models and stuff to
get pretty fast inference even running on a laptop.
2022-12-17 07:00:04 -08:00
Harrison Chase
9bb7195085
Harrison/llm saving (#331)
Co-authored-by: Akash Samant <70665700+asamant21@users.noreply.github.com>
2022-12-13 06:46:01 -08:00
Harrison Chase
3ca2c8d6c5
allow passing of stop params into openai (#232) 2022-11-30 22:20:13 -08:00
Harrison Chase
ca2394028f
move search to not be a chain (#226) 2022-11-29 20:07:44 -08:00
Andrew Gleave
ea67c049f0
Support SQL statements that return no results (#222)
Adds support for statements such as insert, update etc which do not
return any rows.

`engine.execute` is deprecated and so execution has been updated to use
`connection.exec_driver_sql` as-per:


https://docs.sqlalchemy.org/en/14/core/connections.html#sqlalchemy.engine.Engine.execute
2022-11-29 08:28:45 -08:00
Harrison Chase
1b9b8efbc9
pal chain (#207)
from https://arxiv.org/pdf/2211.10435.pdf
2022-11-28 21:38:34 -08:00
Harrison Chase
b94244eb12
nits (#210)
use json.dump

move test to integration tests (since it requires huggingface_hub)
2022-11-27 13:03:09 -08:00
Bagatur
b90e25f786
Add HuggingFace Hub Embeddings (#125)
Add support for calling HuggingFace embedding models
using the HuggingFaceHub Inference API. New class mirrors
the existing HuggingFaceHub LLM implementation. Currently
only supports 'sentence-transformers' models.

Closes #86
2022-11-27 00:24:59 -08:00
Harrison Chase
ae9c6257fe
Harrison/arbitrary params (#186) 2022-11-24 20:01:20 -08:00
Harrison Chase
d3a7429f61
(WIP) agents (#171) 2022-11-22 06:16:26 -08:00
Samantha Whitmore
315b0c09c6
wip: add method for both docstore and embeddings (#119)
this will break atm but wanted to get thoughts on implementation.

1. should add() be on docstore interface?
2. should InMemoryDocstore change to take a list of documents as init?
(makes this slightly easier to implement in FAISS -- if we think it is
less clean then could expose a method to get the number of documents
currently in the dict, and perform the logic of creating the necessary
dictionary in the FAISS.add_texts method.

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
2022-11-20 16:23:58 -08:00
Harrison Chase
c02eb199b6
add few shot example (#148) 2022-11-19 20:32:45 -08:00
Harrison Chase
9f223e6ccc
Harrison/fix lint (#138) 2022-11-14 08:55:59 -08:00
Delip Rao
76cecf8165
A fix for Jupyter environment variable issue (#135)
- fixes the Jupyter environment variable issues mentioned in issue #134 
- fixes format/lint issues in some unrelated files (from make
format/lint)


![image](https://user-images.githubusercontent.com/347398/201599322-090af858-362d-4d69-bf59-208aea65419a.png)
2022-11-14 08:34:01 -08:00
Harrison Chase
f23b3ceb49
consolidate run functions (#126)
consolidating logic for when a chain is able to run with single input
text, single output text

open to feedback on naming, logic, usefulness
2022-11-13 18:14:35 -08:00
Harrison Chase
d87e73ddb1
huggingface tokenizer (#75) 2022-11-13 09:37:44 -08:00
Harrison Chase
e43534d41c
add integration with manifest (#62) 2022-11-10 11:24:11 -08:00
tomeras91
d8734ce5ad
Add AI21 LLMs (#99)
Integrate AI21 /complete API into langchain, to allow access to Jurassic
models.
2022-11-10 08:12:28 -08:00
Samantha Whitmore
a0780cc930
OptimizedPrompt -- k-shot example choice backed by semantic search (#91) 2022-11-09 21:15:42 -08:00
Delip Rao
3ee6e332dd
Implements NLTK and Spacy-based TextSplitters (#103)
This PR is for Issue #88 

- [x] `make format`
- [x] `make lint`
- [x] `make tests`
2022-11-09 20:45:30 -08:00
issam9
28282ad099
Issam9/cohere embeddings (#105)
Add support for cohere embeddings
2022-11-09 13:44:27 -08:00
Delip Rao
95dd2f140e
Make Integration Tests "work" again (#106)
This fixes Issue #104 

The tests for HF Embeddings is skipped because of the segfault issue
mentioned there. Perhaps, a new issue should be created for that?
2022-11-09 13:26:58 -08:00
Harrison Chase
b9f61390e9
add text2text generation (#93)
fixes issue #90
2022-11-08 18:08:46 -08:00
Samantha Whitmore
efbc03bda8
NLPCloud client integration (#81)
lots of kwargs! generation docs here:
https://docs.nlpcloud.com/#generation

This somewhat breaks the paradigm introduced in LLM base class as the
stop sequence isn't a list, and should rightfully be introduced at the
time of initialization of the class, along with the other kwargs that
depend on its presence (e.g. remove_end_sequence, etc.) curious if you'd
want to refactor LLM base class to take out stop as a specific named
kwarg?
2022-11-08 06:24:23 -08:00
issam9
990cd821cc
Issam/hf embeddings (#68)
Add support of HuggingFace embedding models
2022-11-07 05:46:44 -08:00
Harrison Chase
76aff023d7
FAISS and embedding support (#48)
also adds embeddings and an in memory docstore
2022-11-01 21:29:39 -07:00
Harrison Chase
e982cf4b2e
Harrison/update docstore (#47)
change docstore interface
2022-10-31 21:18:52 -07:00
Harrison Chase
af81e9ca9c
add sql database (#35) 2022-10-27 23:21:47 -07:00
Harrison Chase
ce7b14b843
Harrison/add react chain (#24)
from https://arxiv.org/abs/2210.03629

still need to think if docstore abstraction makes sense
2022-10-26 21:02:23 -07:00
Harrison Chase
020c42dcae
Harrison/add huggingface hub (#23)
Add support for huggingface hub

I could not find a good way to enforce stop tokens over the huggingface
hub api - that needs to hopefully be cleaned up in the future
2022-10-25 22:00:33 -07:00
Harrison Chase
d2fdcba29d
fix test name (#22) 2022-10-25 20:22:16 -07:00
Harrison Chase
18aeb72012 initial commit 2022-10-24 14:51:15 -07:00