Commit Graph

77 Commits

Author SHA1 Message Date
Bagatur
45741bcc1b
Bagatur/vectara nit (#9140)
Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
2023-08-11 15:32:03 -07:00
Bagatur
8cb2594562
Bagatur/dingo (#9079)
Co-authored-by: gary <1625721671@qq.com>
2023-08-11 10:54:45 -07:00
Chenyu Zhao
c0acbdca1b
Update Fireworks model names (#9085) 2023-08-10 19:23:42 -07:00
Bidhan Roy
02430e25b6
BagelDB (bageldb.ai), VectorStore integration. (#8971)
- **Description**: [BagelDB](bageldb.ai) a collaborative vector
database. Integrated the bageldb PyPi package with langchain with
related tests and code.

  - **Issue**: Not applicable.
  - **Dependencies**: `betabageldb` PyPi package.
  - **Tag maintainer**: @rlancemartin, @eyurtsev, @baskaryan
  - **Twitter handle**: bageldb_ai (https://twitter.com/BagelDB_ai)
  
We ran `make format`, `make lint` and `make test` locally.

Followed the contribution guideline thoroughly
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

---------

Co-authored-by: Towhid1 <nurulaktertowhid@gmail.com>
2023-08-10 16:48:36 -07:00
Luca Foppiano
dfb93dd2b5
Improved grobid documentation (#9025)
- Description: Improvement in the Grobid loader documentation, typos and
suggesting to use the docker image instead of installing Grobid in local
(the documentation was also limited to Mac, while docker allow running
in any platform)
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @whitenoise
2023-08-10 10:47:22 -04:00
arjunbansal
a2681f950d
add instructions on integrating Log10 (#8938)
- Description: Instruction for integration with Log10: an [open
source](https://github.com/log10-io/log10) proxiless LLM data management
and application development platform that lets you log, debug and tag
your Langchain calls
  - Tag maintainer: @baskaryan
  - Twitter handle: @log10io @coffeephoenix

Several examples showing the integration included
[here](https://github.com/log10-io/log10/tree/main/examples/logging) and
in the PR
2023-08-08 19:15:31 -07:00
Aarav Borthakur
3f64b8a761
Integrate Rockset as a chat history store (#8940)
Description: Adds Rockset as a chat history store
Dependencies: no changes
Tag maintainer: @hwchase17

This PR passes linting and testing. 

I added a test for the integration and an example notebook showing its
use.
2023-08-08 18:54:07 -07:00
Leonid Ganeline
33a2f58fbf
tensoflow_datasets document loader (#8721)
This PR adds `tensoflow_datasets` document loader
2023-08-08 15:19:28 -04:00
Leonid Ganeline
2d078c7767
PubMed document loader (#8893)
- added `PubMed Document Loader` artifacts; ut-s; examples 
- fixed `PubMed utility`; ut-s

@hwchase17
2023-08-08 14:26:03 -04:00
Maurits de Groot
61c2d918c6
Fixed inaccurate import in integrations:providers:bedrock documentation (#8915)
Description:
Fixed inaccurate import in integrations:providers:bedrock documentation

In the current version of the bedrock documentation, page
https://python.langchain.com/docs/integrations/providers/bedrock it
states that the import is from langchain import Bedrock

This has been changed to from langchain.llms.bedrock import Bedrock as
stated in https://python.langchain.com/docs/integrations/llms/bedrock

Issue:
Not applicable

Dependencies
No dependencies required

Tag maintainer
@baskaryan

Twitter handle:
Not applicable
2023-08-08 07:24:36 -07:00
David vonThenen
40079d4936
Introduce Nebula LLM to LangChain (#8876)
## Description

This PR adds Nebula to the available LLMs in LangChain.

Nebula is an LLM focused on conversation understanding and enables users
to extract conversation insights from video, audio, text, and chat-based
conversations. These conversations can occur between any mix of human or
AI participants.

Examples of some questions you could ask Nebula from a given
conversation are:
- What could be the customer’s pain points based on the conversation?
- What sales opportunities can be identified from this conversation?
- What best practices can be derived from this conversation for future
customer interactions?

You can read more about Nebula here:

https://symbl.ai/blog/extract-insights-symbl-ai-generative-ai-recall-ai-meetings/

#### Integration Test 

An integration test is added, but it requires network access. Since
Nebula is fully managed like OpenAI, network access is required to
exercise the integration test.

#### Linting

- [x] make lint
- [x] make test (TODO: there seems to be a failure in another
non-related test??? Need to check on this.)
- [x] make format

### Dependencies

No new dependencies were introduced.

### Twitter handle

[@symbldotai](https://twitter.com/symbldotai)
[@dvonthenen](https://twitter.com/dvonthenen)


If you have any questions, please let me know.

cc: @hwchase17, @baskaryan

---------

Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 13:15:26 -07:00
rjanardhan3
affaaea87b
Updates fireworks (#8765)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Updates to Fireworks Documentation, 
  - Issue: N/A,
  - Dependencies: N/A,
  - Tag maintainer: @rlancemartin,

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-04 10:32:22 -07:00
Leonid Ganeline
1335f2b9f8
MLflow examples (#8642)
Updated `MLflow` examples with links to the examples from MLflow

 @baskaryan
2023-08-02 13:30:28 -07:00
rjanardhan3
68113348cc
Fireworks integration (#8322)
Description - Integrates Fireworks within Langchain LLMs to allow users
to use Fireworks models with Langchain, mainly for summarization.

Issue - Not applicable
Dependencies - None
Tag maintainer - @rlancemartin

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-01 21:17:26 -07:00
Matt Robinson
8961c720b8
docs: update unstructured install instructions (#8596)
### Summary

Updates the `unstructured` install instructions. For
`unstructured>=0.9.0`, dependencies are broken out by document type and
the base `unstructured` package includes fewer dependencies. `pip
install "unstructured[local-inference]"` has been replace by `pip
install "unstructured[all-docs]"`, though the `local-inference` extra is
still supported for the time being.

### Reviewers

- @rlancemartin
- @eyurtsev
- @hwchase17
2023-08-01 14:17:49 -07:00
Bagatur
73072d3db8
mv (#8595) 2023-08-01 14:17:04 -07:00
Tesfagabir Meharizghi
a7000ee89e
Callback handler for Amazon SageMaker Experiments (#8587)
## Description

This PR implements a callback handler for SageMaker Experiments which is
similar to that of mlflow.
* When creating the callback handler, it takes the experiment's run
object as an argument. All the callback outputs are then logged to the
run object.
* The output of each callback action (e.g., `on_llm_start`) is saved to
S3 bucket as json file.
* Optionally, you can also log additional information such as the LLM
hyper-parameters to the same run object.
* Once the callback object is no more needed, you will need to call the
`flush_tracker()` method. This makes sure that any intermediate files
are deleted.
* A separate notebook example is provided to show how the callback is
used.

@3coins  @agola11

---------

Co-authored-by: Tesfagabir Meharizghi <mehariz@amazon.com>
2023-08-01 13:47:08 -07:00
William FH
b7c0eb9ecb
Wfh/ref links (#8454) 2023-07-29 08:44:32 -07:00
HeTaoPKU
d5884017a9
Add Minimax llm model to langchain (#7645)
- Description: Minimax is a great AI startup from China, recently they
released their latest model and chat API, and the API is widely-spread
in China. As a result, I'd like to add the Minimax llm model to
Langchain.
- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: the <tao.he@hulu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 22:53:23 -07:00
Jiayi Ni
1efb9bae5f
FEAT: Integrate Xinference LLMs and Embeddings (#8171)
- [Xorbits
Inference(Xinference)](https://github.com/xorbitsai/inference) is a
powerful and versatile library designed to serve language, speech
recognition, and multimodal models. Xinference supports a variety of
GGML-compatible models including chatglm, whisper, and vicuna, and
utilizes heterogeneous hardware and a distributed architecture for
seamless cross-device and cross-server model deployment.
- This PR integrates Xinference models and Xinference embeddings into
LangChain.
- Dependencies: To install the depenedencies for this integration, run
    
    `pip install "xinference[all]"`
    
- Example Usage:

To start a local instance of Xinference, run `xinference`.

To deploy Xinference in a distributed cluster, first start an Xinference
supervisor using `xinference-supervisor`:

`xinference-supervisor -H "${supervisor_host}"`

Then, start the Xinference workers using `xinference-worker` on each
server you want to run them on.

`xinference-worker -e "http://${supervisor_host}:9997"`

To use Xinference with LangChain, you also need to launch a model. You
can use command line interface (CLI) to do so. Fo example: `xinference
launch -n vicuna-v1.3 -f ggmlv3 -q q4_0`. This launches a model named
vicuna-v1.3 with `model_format="ggmlv3"` and `quantization="q4_0"`. A
model UID is returned for you to use.

Now you can use Xinference with LangChain:

```python
from langchain.llms import Xinference

llm = Xinference(
    server_url="http://0.0.0.0:9997", # suppose the supervisor_host is "0.0.0.0"
    model_uid = {model_uid} # model UID returned from launching a model
)

llm(
    prompt="Q: where can we visit in the capital of France? A:",
    generate_config={"max_tokens": 1024},
)
```

You can also use RESTful client to launch a model:
```python
from xinference.client import RESTfulClient

client = RESTfulClient("http://0.0.0.0:9997")

model_uid = client.launch_model(model_name="vicuna-v1.3", model_size_in_billions=7, quantization="q4_0")
```

The following code block demonstrates how to use Xinference embeddings
with LangChain:
```python
from langchain.embeddings import XinferenceEmbeddings

xinference = XinferenceEmbeddings(
    server_url="http://0.0.0.0:9997",
    model_uid = model_uid
)
```

```python
query_result = xinference.embed_query("This is a test query")
```

```python
doc_result = xinference.embed_documents(["text A", "text B"])
```

Xinference is still under rapid development. Feel free to [join our
Slack
community](https://xorbitsio.slack.com/join/shared_invite/zt-1z3zsm9ep-87yI9YZ_B79HLB2ccTq4WA)
to get the latest updates!

- Request for review: @hwchase17, @baskaryan
- Twitter handle: https://twitter.com/Xorbitsio

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-27 21:23:19 -07:00
Bagatur
68763bd25f
mv popular and additional chains to use cases (#8242) 2023-07-27 12:55:13 -07:00
Aarav Borthakur
8ce661d5a1
Docs: Fix Rockset links (#8214)
Fix broken Rockset links.

Right now links at
https://python.langchain.com/docs/integrations/providers/rockset are
broken.
2023-07-26 10:38:37 -07:00
Emory Petermann
7734a2b5ab
update golden-query notebook and fix typo in golden docs (#8253)
updating the documentation to be consistent for Golden query tool and
have a better introduction to the tool
2023-07-25 18:15:48 -07:00
William FH
0a16b3d84b
Update Integrations links (#8206) 2023-07-24 21:20:32 -07:00
Anthony Mahanna
76102971c0
ArangoDB/AQL support for Graph QA Chain (#7880)
**Description**: Serves as an introduction to LangChain's support for
[ArangoDB](https://github.com/arangodb/arangodb), similar to
https://github.com/hwchase17/langchain/pull/7165 and
https://github.com/hwchase17/langchain/pull/4881

**Issue**: No issue has been created for this feature

**Dependencies**: `python-arango` has been added as an optional
dependency via the `CONTRIBUTING.md` guidelines
 
**Twitter handle**: [at]arangodb

- Integration test has been added
- Notebook has been added:
[graph_arangodb_qa.ipynb](https://github.com/amahanna/langchain/blob/master/docs/extras/modules/chains/additional/graph_arangodb_qa.ipynb)

[![Open In
Collab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/amahanna/langchain/blob/master/docs/extras/modules/chains/additional/graph_arangodb_qa.ipynb)

```
docker run -p 8529:8529 -e ARANGO_ROOT_PASSWORD= arangodb/arangodb
```

```
pip install git+https://github.com/amahanna/langchain.git
```

```python
from arango import ArangoClient

from langchain.chat_models import ChatOpenAI
from langchain.graphs import ArangoGraph
from langchain.chains import ArangoGraphQAChain

db = ArangoClient(hosts="localhost:8529").db(name="_system", username="root", password="", verify=True)

graph = ArangoGraph(db)

chain = ArangoGraphQAChain.from_llm(ChatOpenAI(temperature=0), graph=graph)

chain.run("Is Ned Stark alive?")
```

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-07-24 15:16:52 -07:00
Bagatur
1a7d8667c8
Bagatur/gateway chat (#8198)
Signed-off-by: dbczumar <corey.zumar@databricks.com>
Co-authored-by: dbczumar <corey.zumar@databricks.com>
2023-07-24 12:17:00 -07:00
Bagatur
c8c8635dc9
mv module integrations docs (#8101) 2023-07-23 23:23:16 -07:00