Best to review one commit at a time, since two of the commits are 100%
autogenerated changes from running `ruff format`:
- Install and use `ruff format` instead of black for code formatting.
- Output of `ruff format .` in the `langchain` package.
- Use `ruff format` in experimental package.
- Format changes in experimental package by `ruff format`.
- Manual formatting fixes to make `ruff .` pass.
- Description: This PR adds a new chain `rl_chain.PickBest` for learned
prompt variable injection, detailed description and usage can be found
in the example notebook added. It essentially adds a
[VowpalWabbit](https://github.com/VowpalWabbit/vowpal_wabbit) layer
before the llm call in order to learn or personalize prompt variable
selections.
Most of the code is to make the API simple and provide lots of defaults
and data wrangling that is needed to use Vowpal Wabbit, so that the user
of the chain doesn't have to worry about it.
- Dependencies:
[vowpal-wabbit-next](https://pypi.org/project/vowpal-wabbit-next/),
- sentence-transformers (already a dep)
- numpy (already a dep)
- tagging @ataymano who contributed to this chain
- Tag maintainer: @baskaryan
- Twitter handle: @olgavrou
Added example notebook and unit tests
### Description
Add instance anonymization - if `John Doe` will appear twice in the
text, it will be treated as the same entity.
The difference between `PresidioAnonymizer` and
`PresidioReversibleAnonymizer` is that only the second one has a
built-in memory, so it will remember anonymization mapping for multiple
texts:
```
>>> anonymizer = PresidioAnonymizer()
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Brett Russell. Hi Brett Russell!'
```
```
>>> anonymizer = PresidioReversibleAnonymizer()
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
>>> anonymizer.anonymize("My name is John Doe. Hi John Doe!")
'My name is Noah Rhodes. Hi Noah Rhodes!'
```
### Twitter handle
@deepsense_ai / @MaksOpp
### Tag maintainer
@baskaryan @hwchase17 @hinthornw
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
continuation of PR #8550
@hwchase17 please see and merge. And also close the PR #8550.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
### Description
renamed several repository links from `hwchase17` to `langchain-ai`.
### Why
I discovered that the README file in the devcontainer contains an old
repository name, so I took the opportunity to rename the old repository
name in all files within the repository, excluding those that do not
require changes.
### Dependencies
none
### Tag maintainer
@baskaryan
### Twitter handle
[kzk_maeda](https://twitter.com/kzk_maeda)
### Description
The feature for pseudonymizing data with ability to retrieve original
text (deanonymization) has been implemented. In order to protect private
data, such as when querying external APIs (OpenAI), it is worth
pseudonymizing sensitive data to maintain full privacy. But then, after
the model response, it would be good to have the data in the original
form.
I implemented the `PresidioReversibleAnonymizer`, which consists of two
parts:
1. anonymization - it works the same way as `PresidioAnonymizer`, plus
the object itself stores a mapping of made-up values to original ones,
for example:
```
{
"PERSON": {
"<anonymized>": "<original>",
"John Doe": "Slim Shady"
},
"PHONE_NUMBER": {
"111-111-1111": "555-555-5555"
}
...
}
```
2. deanonymization - using the mapping described above, it matches fake
data with original data and then substitutes it.
Between anonymization and deanonymization user can perform different
operations, for example, passing the output to LLM.
### Future works
- **instance anonymization** - at this point, each occurrence of PII is
treated as a separate entity and separately anonymized. Therefore, two
occurrences of the name John Doe in the text will be changed to two
different names. It is therefore worth introducing support for full
instance detection, so that repeated occurrences are treated as a single
object.
- **better matching and substitution of fake values for real ones** -
currently the strategy is based on matching full strings and then
substituting them. Due to the indeterminism of language models, it may
happen that the value in the answer is slightly changed (e.g. *John Doe*
-> *John* or *Main St, New York* -> *New York*) and such a substitution
is then no longer possible. Therefore, it is worth adjusting the
matching for your needs.
- **Q&A with anonymization** - when I'm done writing all the
functionality, I thought it would be a cool resource in documentation to
write a notebook about retrieval from documents using anonymization. An
iterative process, adding new recognizers to fit the data, lessons
learned and what to look out for
### Twitter handle
@deepsense_ai / @MaksOpp
---------
Co-authored-by: MaksOpp <maks.operlejn@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
Description: new chain for logical fallacy removal from model output in
chain and docs
Issue: n/a see above
Dependencies: none
Tag maintainer: @hinthornw in past from my end but not sure who that
would be for maintenance of chains
Twitter handle: no twitter feel free to call out my git user if shout
out j-space-b
Note: created documentation in docs/extras
---------
Co-authored-by: Jon Bennion <jb@Jons-MacBook-Pro.local>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
### Description
The feature for anonymizing data has been implemented. In order to
protect private data, such as when querying external APIs (OpenAI), it
is worth pseudonymizing sensitive data to maintain full privacy.
Anonynization consists of two steps:
1. **Identification:** Identify all data fields that contain personally
identifiable information (PII).
2. **Replacement**: Replace all PIIs with pseudo values or codes that do
not reveal any personal information about the individual but can be used
for reference. We're not using regular encryption, because the language
model won't be able to understand the meaning or context of the
encrypted data.
We use *Microsoft Presidio* together with *Faker* framework for
anonymization purposes because of the wide range of functionalities they
provide. The full implementation is available in `PresidioAnonymizer`.
### Future works
- **deanonymization** - add the ability to reverse anonymization. For
example, the workflow could look like this: `anonymize -> LLMChain ->
deanonymize`. By doing this, we will retain anonymity in requests to,
for example, OpenAI, and then be able restore the original data.
- **instance anonymization** - at this point, each occurrence of PII is
treated as a separate entity and separately anonymized. Therefore, two
occurrences of the name John Doe in the text will be changed to two
different names. It is therefore worth introducing support for full
instance detection, so that repeated occurrences are treated as a single
object.
### Twitter handle
@deepsense_ai / @MaksOpp
---------
Co-authored-by: MaksOpp <maks.operlejn@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
In order to use `requires` marker in langchain-experimental, there's a
need for *conftest.py* file inside. Everything is identical to the main
langchain module.
Co-authored-by: maks-operlejn-ds <maks.operlejn@gmail.com>
<!-- Thank you for contributing to LangChain!
Replace this entire comment with:
- Description: a description of the change,
- Issue: the issue # it fixes (if applicable),
- Dependencies: any dependencies required for this change,
- Tag maintainer: for a quicker response, tag the relevant maintainer
(see below),
- Twitter handle: we announce bigger features on Twitter. If your PR
gets announced and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` to check this
locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc:
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. These live is docs/extras
directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17, @rlancemartin.
-->
# Added SmartGPT workflow by providing SmartLLM wrapper around LLMs
Edit:
As @hwchase17 suggested, this should be a chain, not an LLM. I have
adapted the PR.
It is used like this:
```
from langchain.prompts import PromptTemplate
from langchain.chains import SmartLLMChain
from langchain.chat_models import ChatOpenAI
hard_question = "I have a 12 liter jug and a 6 liter jug. I want to measure 6 liters. How do I do it?"
hard_question_prompt = PromptTemplate.from_template(hard_question)
llm = ChatOpenAI(model_name="gpt-4")
prompt = PromptTemplate.from_template(hard_question)
chain = SmartLLMChain(llm=llm, prompt=prompt, verbose=True)
chain.run({})
```
Original text:
Added SmartLLM wrapper around LLMs to allow for SmartGPT workflow (as in
https://youtu.be/wVzuvf9D9BU). SmartLLM can be used wherever LLM can be
used. E.g:
```
smart_llm = SmartLLM(llm=OpenAI())
smart_llm("What would be a good company name for a company that makes colorful socks?")
```
or
```
smart_llm = SmartLLM(llm=OpenAI())
prompt = PromptTemplate(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
chain = LLMChain(llm=smart_llm, prompt=prompt)
chain.run("colorful socks")
```
SmartGPT consists of 3 steps:
1. Ideate - generate n possible solutions ("ideas") to user prompt
2. Critique - find flaws in every idea & select best one
3. Resolve - improve upon best idea & return it
Fixes#4463
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @agola11
Twitter: [@UmerHAdil](https://twitter.com/@UmerHAdil) | Discord:
RicChilligerDude#7589
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
# [WIP] Tree of Thought introducing a new ToTChain.
This PR adds a new chain called ToTChain that implements the ["Large
Language Model Guided
Tree-of-Though"](https://arxiv.org/pdf/2305.08291.pdf) paper.
There's a notebook example `docs/modules/chains/examples/tot.ipynb` that
shows how to use it.
Implements #4975
## Who can review?
Community members can review the PR once tests pass. Tag
maintainers/contributors who might be interested:
- @hwchase17
- @vowelparrot
---------
Co-authored-by: Vadim Gubergrits <vgubergrits@outbox.com>
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>