This PR adds LLM wrapper for Databricks. It supports two endpoint types:
* serving endpoint
* cluster driver proxy app
An integration notebook is included to show how it works.
Co-authored-by: Davis Chase <130488702+dev2049@users.noreply.github.com>
Co-authored-by: Gengliang Wang <gengliang@apache.org>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add C Transformers for GGML Models
I created Python bindings for the GGML models:
https://github.com/marella/ctransformers
Currently it supports GPT-2, GPT-J, GPT-NeoX, LLaMA, MPT, etc. See
[Supported
Models](https://github.com/marella/ctransformers#supported-models).
It provides a unified interface for all models:
```python
from langchain.llms import CTransformers
llm = CTransformers(model='/path/to/ggml-gpt-2.bin', model_type='gpt2')
print(llm('AI is going to'))
```
It can be used with models hosted on the Hugging Face Hub:
```py
llm = CTransformers(model='marella/gpt-2-ggml')
```
It supports streaming:
```py
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
llm = CTransformers(model='marella/gpt-2-ggml', callbacks=[StreamingStdOutCallbackHandler()])
```
Please see [README](https://github.com/marella/ctransformers#readme) for
more details.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Beam
Calls the Beam API wrapper to deploy and make subsequent calls to an
instance of the gpt2 LLM in a cloud deployment. Requires installation of
the Beam library and registration of Beam Client ID and Client Secret.
Additional calls can then be made through the instance of the large
language model in your code or by calling the Beam API.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Add MosaicML inference endpoints
This PR adds support in langchain for MosaicML inference endpoints. We
both serve a select few open source models, and allow customers to
deploy their own models using our inference service. Docs are here
(https://docs.mosaicml.com/en/latest/inference.html), and sign up form
is here (https://forms.mosaicml.com/demo?utm_source=langchain). I'm not
intimately familiar with the details of langchain, or the contribution
process, so please let me know if there is anything that needs fixing or
this is the wrong way to submit a new integration, thanks!
I'm also not sure what the procedure is for integration tests. I have
tested locally with my api key.
## Who can review?
@hwchase17
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
OpenLM is a zero-dependency OpenAI-compatible LLM provider that can call
different inference endpoints directly via HTTP. It implements the
OpenAI Completion class so that it can be used as a drop-in replacement
for the OpenAI API. This changeset utilizes BaseOpenAI for minimal added
code.
---------
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
# Update GPT4ALL integration
GPT4ALL have completely changed their bindings. They use a bit odd
implementation that doesn't fit well into base.py and it will probably
be changed again, so it's a temporary solution.
Fixes#3839, #4628
# Docs: improvements in the `retrievers/examples/` notebooks
Its primary purpose is to make the Jupyter notebook examples
**consistent** and more suitable for first-time viewers.
- add links to the integration source (if applicable) with a short
description of this source;
- removed `_retriever` suffix from the file names (where it existed) for
consistency;
- removed ` retriever` from the notebook title (where it existed) for
consistency;
- added code to install necessary Python package(s);
- added code to set up the necessary API Key.
- very small fixes in notebooks from other folders (for consistency):
- docs/modules/indexes/vectorstores/examples/elasticsearch.ipynb
- docs/modules/indexes/vectorstores/examples/pinecone.ipynb
- docs/modules/models/llms/integrations/cohere.ipynb
- fixed misspelling in langchain/retrievers/time_weighted_retriever.py
comment (sorry, about this change in a .py file )
## Who can review
@dev2049
[RELLM](https://github.com/r2d4/rellm) is a library that wraps local
HuggingFace pipeline models for structured decoding.
RELLM works by generating tokens one at a time. At each step, it masks
tokens that don't conform to the provided partial regular expression.
[JSONFormer](https://github.com/1rgs/jsonformer) is a bit different, where it sequentially adds the keys then decodes each value directly
[Text Generation
Inference](https://github.com/huggingface/text-generation-inference) is
a Rust, Python and gRPC server for generating text using LLMs.
This pull request add support for self hosted Text Generation Inference
servers.
feature: #4280
---------
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Dev 2049 <dev.dev2049@gmail.com>
Seems the pyllamacpp package is no longer the supported bindings from
gpt4all. Tested that this works locally.
Given that the older models weren't very performant, I think it's better
to migrate now without trying to include a lot of try / except blocks
---------
Co-authored-by: Nissan Pow <npow@users.noreply.github.com>
Co-authored-by: Nissan Pow <pownissa@amazon.com>
One of our users noticed a bug when calling streaming models. This is
because those models return an iterator. So, I've updated the Replicate
`_call` code to join together the output. The other advantage of this
fix is that if you requested multiple outputs you would get them all –
previously I was just returning output[0].
I also adjusted the demo docs to use dolly, because we're featuring that
model right now and it's always hot, so people won't have to wait for
the model to boot up.
The error that this fixes:
```
> llm = Replicate(model=“replicate/flan-t5-xl:eec2f71c986dfa3b7a5d842d22e1130550f015720966bec48beaae059b19ef4c”)
> llm(“hello”)
> Traceback (most recent call last):
File "/Users/charlieholtz/workspace/dev/python/main.py", line 15, in <module>
print(llm(prompt))
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 246, in __call__
return self.generate([prompt], stop=stop).generations[0][0].text
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 140, in generate
raise e
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 137, in generate
output = self._generate(prompts, stop=stop)
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/base.py", line 324, in _generate
text = self._call(prompt, stop=stop)
File "/opt/homebrew/lib/python3.10/site-packages/langchain/llms/replicate.py", line 108, in _call
return outputs[0]
TypeError: 'generator' object is not subscriptable
```
- Updated `langchain/docs/modules/models/llms/integrations/` notebooks:
added links to the original sites, the install information, etc.
- Added the `nlpcloud` notebook.
- Removed "Example" from Titles of some notebooks, so all notebook
titles are consistent.