Commit Graph

59 Commits

Author SHA1 Message Date
Bagatur
2ae568dcf5
Separate platforms integrations docs (#10609) 2023-09-15 12:18:57 -07:00
Aashish Saini
f9f1340208
Fixed some grammatical and spelling errors (#10595)
Fixed some grammatical and spelling errors
2023-09-14 17:43:36 -07:00
Leonid Ganeline
f4e6eac3b6
docs: self-query consistency (#10502)
The `self-que[ring`
navbar](https://python.langchain.com/docs/modules/data_connection/retrievers/self_query/)
has repeated `self-quering` repeated in each menu item. I've simplified
it to be more readable
- removed `self-quering` from a title of each page;
- added description to the vector stores
- added description and link to the Integration Card
(`integrations/providers`) of the vector stores when they are missed.
2023-09-13 14:43:04 -07:00
wxd
f9636b6cd2
add vearch repository link (#10491)
- Description: add vearch repository link
2023-09-13 12:06:47 -07:00
Bagatur
70b6897dc1
Mv vearch provider doc (#10466) 2023-09-11 15:00:40 -07:00
ColabDog
6ad6bb46c4
Feature/add deepeval (#10349)
Description: Adding `DeepEval` - which provides an opinionated framework
for testing and evaluating LLMs
Issue: Missing Deepeval
Dependencies: Optional DeepEval dependency
Tag maintainer: @baskaryan   (not 100% sure)
Twitter handle: https://twitter.com/ColabDog
2023-09-09 13:28:17 -07:00
Bagatur
9095dc69ac Konko fix dependency 2023-09-08 10:06:37 -07:00
Michael Haddad
c6b27b3692
add konko chat_model files (#10267)
_Thank you to the LangChain team for the great project and in advance
for your review. Let me know if I can provide any other additional
information or do things differently in the future to make your lives
easier 🙏 _

@hwchase17 please let me know if you're not the right person to review 😄

This PR enables LangChain to access the Konko API via the chat_models
API wrapper.

Konko API is a fully managed API designed to help application
developers:

1. Select the right LLM(s) for their application
2. Prototype with various open-source and proprietary LLMs
3. Move to production in-line with their security, privacy, throughput,
latency SLAs without infrastructure set-up or administration using Konko
AI's SOC 2 compliant infrastructure

_Note on integration tests:_ 
We added 14 integration tests. They will all fail unless you export the
right API keys. 13 will pass with a KONKO_API_KEY provided and the other
one will pass with a OPENAI_API_KEY provided. When both are provided,
all 14 integration tests pass. If you would like to test this yourself,
please let me know and I can provide some temporary keys.

### Installation and Setup

1. **First you'll need an API key**
2. **Install Konko AI's Python SDK**
    1. Enable a Python3.8+ environment
    
    `pip install konko`
    
3.  **Set API Keys**
    
          **Option 1:** Set Environment Variables
    
    You can set environment variables for
    
    1. KONKO_API_KEY (Required)
    2. OPENAI_API_KEY (Optional)
    
    In your current shell session, use the export command:
    
    `export KONKO_API_KEY={your_KONKO_API_KEY_here}`
    `export OPENAI_API_KEY={your_OPENAI_API_KEY_here} #Optional`
    
Alternatively, you can add the above lines directly to your shell
startup script (such as .bashrc or .bash_profile for Bash shell and
.zshrc for Zsh shell) to have them set automatically every time a new
shell session starts.
    
    **Option 2:** Set API Keys Programmatically
    
If you prefer to set your API keys directly within your Python script or
Jupyter notebook, you can use the following commands:
    
    ```python
    konko.set_api_key('your_KONKO_API_KEY_here')
    konko.set_openai_api_key('your_OPENAI_API_KEY_here') # Optional
    
    ```
    

### Calling a model

Find a model on the [[Konko Introduction
page](https://docs.konko.ai/docs#available-models)](https://docs.konko.ai/docs#available-models)

For example, for this [[LLama 2
model](https://docs.konko.ai/docs/meta-llama-2-13b-chat)](https://docs.konko.ai/docs/meta-llama-2-13b-chat).
The model id would be: `"meta-llama/Llama-2-13b-chat-hf"`

Another way to find the list of models running on the Konko instance is
through this
[[endpoint](https://docs.konko.ai/reference/listmodels)](https://docs.konko.ai/reference/listmodels).

From here, we can initialize our model:

```python
chat_instance = ChatKonko(max_tokens=10, model = 'meta-llama/Llama-2-13b-chat-hf')

```

And run it:

```python
msg = HumanMessage(content="Hi")
chat_response = chat_instance([msg])

```
2023-09-08 10:00:55 -07:00
Aashish Saini
f6f0b0f975
Fixed typo in bittensor.mdx (#10160)
Fixed Typo in bittenaor.mdx

---------

Co-authored-by: Aashish Saini <141953346+AashishSainiShorthillsAI@users.noreply.github.com>
Co-authored-by: AryamanJaiswalShorthillsAI <142397527+AryamanJaiswalShorthillsAI@users.noreply.github.com>
Co-authored-by: Adarsh Shrivastav <142413097+AdarshKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: Vishal <141389263+VishalYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: ChetnaGuptaShorthillsAI <142381084+ChetnaGuptaShorthillsAI@users.noreply.github.com>
Co-authored-by: PankajKumarShorthillsAI <142473460+PankajKumarShorthillsAI@users.noreply.github.com>
Co-authored-by: AbhishekYadavShorthillsAI <142393903+AbhishekYadavShorthillsAI@users.noreply.github.com>
Co-authored-by: Aayush <142384656+AayushShorthillsAI@users.noreply.github.com>
2023-09-03 21:49:33 -07:00
Leonid Ganeline
03174c91d0
docs: MLflow API and examples (#9547)
Added docs and links to the API and examples provided by MLflow itself
2023-09-03 20:52:20 -07:00
seamusp
43c4c6dfcc
docs: misc modelIO fixes (#9734)
Various improvements to the Model I/O section of the documentation

- Changed "Chat Model" to "chat model" in a few spots for internal
consistency
- Minor spelling & grammar fixes to improve readability & comprehension
2023-09-03 20:33:20 -07:00
Bagatur
b485c3048b
rm base64 images from docs (#10110)
Causing problems indexing docs and notebook images don't render after markdown conversion anyways
2023-09-01 15:15:12 -07:00
Stefano Lottini
c710c7303f
fix wrong import line in cassandra doc page for vector store (#10041)
This fixes the exampe import line in the general "cassandra" doc page
mdx file. (it was erroneously a copy of the chat message history import
statement found below).
2023-08-31 16:05:46 -07:00
Bagatur
3efab8d3df
implement vectorstores by tencent vectordb (#9989)
Hi there!
I'm excited to open this PR to add support for using 'Tencent Cloud
VectorDB' as a vector store.

Tencent Cloud VectorDB is a fully-managed, self-developed,
enterprise-level distributed database service designed for storing,
retrieving, and analyzing multi-dimensional vector data. The database
supports multiple index types and similarity calculation methods, with a
single index supporting vector scales up to 1 billion and capable of
handling millions of QPS with millisecond-level query latency. Tencent
Cloud VectorDB not only provides external knowledge bases for large
models to improve their accuracy, but also has wide applications in AI
fields such as recommendation systems, NLP services, computer vision,
and intelligent customer service.

The PR includes:
 Implementation of Vectorstore.

I have read your [contributing
guidelines](72b7d76d79/.github/CONTRIBUTING.md).
And I have passed the tests below

 make format
 make lint
 make coverage
 make test
2023-08-31 00:48:25 -07:00
Tomaz Bratanic
f2e8399cc8
Fix link in Neo4j provider page (#10023) 2023-08-31 00:32:42 -07:00
wlleiiwang
8c4e29240c implement vectorstores by tencent vectordb 2023-08-30 16:40:58 +08:00
Tomaz Bratanic
6092422e10
Add neo4j provider page (#9941) 2023-08-29 10:09:51 -07:00
Leonid Ganeline
e01b00aa54
docs: ainetwork update (#9871)
* Added links to the AI Network
* Made title consistent to other tool kits
* Added `integrations/providers/` integration card page
* **No changes** in the example code!
2023-08-28 18:16:22 -07:00
Leonid Ganeline
cf122b6269
docs: Infino example fix (#9888)
- Fixed a broken link in the `integrations/providers/infino.mdx`
- Fixed a title in the `integration/collbacks/infino.ipynb` example
- Updated text format in this example.
2023-08-28 17:42:11 -07:00
seamusp
25f2c82ae8
docs:misc fixes (#9671)
Improve internal consistency in LangChain documentation
- Change occurrences of eg and eg. to e.g.
- Fix headers containing unnecessary capital letters.
- Change instances of "few shot" to "few-shot".
- Add periods to end of sentences where missing.
- Minor spelling and grammar fixes.
2023-08-23 22:36:54 -07:00
Yong woo Song
f0ae10a20e
Fix typo in tigris (#9637)
The link has a **typo** in [tigirs
docs](https://python.langchain.com/docs/integrations/providers/tigris),
so I couldn't access it. So, I have corrected it.
Thanks! ☺️
2023-08-23 07:15:18 -07:00
Leonid Ganeline
e1f4f9ac3e
docs: integrations/providers (#9631)
Added missed pages for `integrations/providers` from `vectorstores`.
Updated several `vectorstores` notebooks.
2023-08-22 20:28:11 -07:00
Adilkhan Sarsen
f29312eb84
Fixing deeplake.mdx file as it uses outdates links (#9602)
deeplake.mdx was using old links and was not working properly, in the PR
we fix the issue.
2023-08-22 15:12:24 -07:00
Matthew Zeiler
949b2cf177
Improvements to the Clarifai integration (#9290)
- Improved docs
- Improved performance in multiple ways through batching, threading,
etc.
 - fixed error message 
 - Added support for metadata filtering during similarity search.

@baskaryan PTAL
2023-08-21 12:53:36 -07:00
ricki-epsilla
66a47d9a61
add Epsilla vectorstore (#9239)
[Epsilla](https://github.com/epsilla-cloud/vectordb) vectordb is an
open-source vector database that leverages the advanced academic
parallel graph traversal techniques for vector indexing.
This PR adds basic integration with
[pyepsilla](https://github.com/epsilla-cloud/epsilla-python-client)(Epsilla
vectordb python client) as a vectorstore.

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-21 12:51:15 -07:00
Bagatur
9abf60acb6
Bagatur/vectara regression (#9276)
Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
Co-authored-by: Ofer Mendelevitch <ofermend@gmail.com>
2023-08-15 16:19:46 -07:00
Xiaoyu Xee
b30f449dae
Add dashvector vectorstore (#9163)
## Description
Add `Dashvector` vectorstore for langchain

- [dashvector quick
start](https://help.aliyun.com/document_detail/2510223.html)
- [dashvector package description](https://pypi.org/project/dashvector/)

## How to use
```python
from langchain.vectorstores.dashvector import DashVector

dashvector = DashVector.from_documents(docs, embeddings)
```

---------

Co-authored-by: smallrain.xuxy <smallrain.xuxy@alibaba-inc.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 16:19:30 -07:00
Kunj-2206
1b3942ba74
Added BittensorLLM (#9250)
Description: Adding NIBittensorLLM via Validator Endpoint to langchain
llms
Tag maintainer: @Kunj-2206

Maintainer responsibilities:
    Models / Prompts: @hwchase17, @baskaryan

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-15 15:40:52 -07:00
Toshish Jawale
852722ea45
Improvements in Nebula LLM (#9226)
- Description: Added improvements in Nebula LLM to perform auto-retry;
more generation parameters supported. Conversation is no longer required
to be passed in the LLM object. Examples are updated.
  - Issue: N/A
  - Dependencies: N/A
  - Tag maintainer: @baskaryan 
  - Twitter handle: symbldotai

---------

Co-authored-by: toshishjawale <toshish@symbl.ai>
2023-08-15 15:33:07 -07:00
Anthony Mahanna
0a04e63811
docs: Update ArangoDB Links (#9251)
ready for review 

- mdx link update
- colab link update
2023-08-15 07:43:47 -07:00
Joseph McElroy
eac4ddb4bb
Elasticsearch Store Improvements (#8636)
Todo:
- [x] Connection options (cloud, localhost url, es_connection) support
- [x] Logging support
- [x] Customisable field support
- [x] Distance Similarity support 
- [x] Metadata support
  - [x] Metadata Filter support 
- [x] Retrieval Strategies
  - [x] Approx
  - [x] Approx with Hybrid
  - [x] Exact
  - [x] Custom 
  - [x] ELSER (excluding hybrid as we are working on RRF support)
- [x] integration tests 
- [x] Documentation

👋 this is a contribution to improve Elasticsearch integration with
Langchain. Its based loosely on the changes that are in master but with
some notable changes:

## Package name & design improvements
The import name is now `ElasticsearchStore`, to aid discoverability of
the VectorStore.

```py
## Before
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch, ElasticKnnSearch

## Now
from langchain.vectorstores.elasticsearch import ElasticsearchStore
```

## Retrieval Strategy support
Before we had a number of classes, depending on the strategy you wanted.
`ElasticKnnSearch` for approx, `ElasticVectorSearch` for exact / brute
force.

With `ElasticsearchStore` we have retrieval strategies:

### Approx Example
Default strategy for the vast majority of developers who use
Elasticsearch will be inferring the embeddings from outside of
Elasticsearch. Uses KNN functionality of _search.

```py
        texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index"
        )
        output = docsearch.similarity_search("foo", k=1)
```

### Approx, with hybrid
Developers who want to search, using both the embedding and the text
bm25 match. Its simple to enable.

```py
 texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ApproxRetrievalStrategy(hybrid=True)
        )
        output = docsearch.similarity_search("foo", k=1)
```

### Approx, with `query_model_id`
Developers who want to infer within Elasticsearch, using the model
loaded in the ml node.

This relies on the developer to setup the pipeline and index if they
wish to embed the text in Elasticsearch. Example of this in the test.

```py
 texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ApproxRetrievalStrategy(
                query_model_id="sentence-transformers__all-minilm-l6-v2"
            ),
        )
        output = docsearch.similarity_search("foo", k=1)
```

### I want to provide my own custom Elasticsearch Query
You might want to have more control over the query, to perform
multi-phase retrieval such as LTR, linearly boosting on document
parameters like recently updated or geo-distance. You can do this with
`custom_query_fn`

```py
        def my_custom_query(query_body: dict, query: str) -> dict:
            return {"query": {"match": {"text": {"query": "bar"}}}}

        texts = ["foo", "bar", "baz"]
        docsearch = ElasticsearchStore.from_texts(
            texts, FakeEmbeddings(), **elasticsearch_connection, index_name=index_name
        )
        docsearch.similarity_search("foo", k=1, custom_query=my_custom_query)

```

### Exact Example
Developers who have a small dataset in Elasticsearch, dont want the cost
of indexing the dims vs tradeoff on cost at query time. Uses
script_score.

```py
        texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.ExactRetrievalStrategy(),
        )
        output = docsearch.similarity_search("foo", k=1)
```

### ELSER Example
Elastic provides its own sparse vector model called ELSER. With these
changes, its really easy to use. The vector store creates a pipeline and
index thats setup for ELSER. All the developer needs to do is configure,
ingest and query via langchain tooling.

```py
texts = ["foo", "bar", "baz"]
       docsearch = ElasticsearchStore.from_texts(
            texts,
            FakeEmbeddings(),
            es_url="http://localhost:9200",
            index_name="sample-index",
            strategy=ElasticsearchStore.SparseVectorStrategy(),
        )
        output = docsearch.similarity_search("foo", k=1)

```

## Architecture
In future, we can introduce new strategies and allow us to not break bwc
as we evolve the index / query strategy.

## Credit
On release, could you credit @elastic and @phoey1 please? Thank you!

---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-14 23:42:35 -07:00
Michael Goin
621da3c164
Adds DeepSparse as an LLM (#9184)
Adds [DeepSparse](https://github.com/neuralmagic/deepsparse) as an LLM
backend. DeepSparse supports running various open-source sparsified
models hosted on [SparseZoo](https://sparsezoo.neuralmagic.com/) for
performance gains on CPUs.

Twitter handles: @mgoin_ @neuralmagic


---------

Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-13 22:35:58 -07:00
Bagatur
45741bcc1b
Bagatur/vectara nit (#9140)
Co-authored-by: Ofer Mendelevitch <ofer@vectara.com>
2023-08-11 15:32:03 -07:00
Bagatur
8cb2594562
Bagatur/dingo (#9079)
Co-authored-by: gary <1625721671@qq.com>
2023-08-11 10:54:45 -07:00
Chenyu Zhao
c0acbdca1b
Update Fireworks model names (#9085) 2023-08-10 19:23:42 -07:00
Bidhan Roy
02430e25b6
BagelDB (bageldb.ai), VectorStore integration. (#8971)
- **Description**: [BagelDB](bageldb.ai) a collaborative vector
database. Integrated the bageldb PyPi package with langchain with
related tests and code.

  - **Issue**: Not applicable.
  - **Dependencies**: `betabageldb` PyPi package.
  - **Tag maintainer**: @rlancemartin, @eyurtsev, @baskaryan
  - **Twitter handle**: bageldb_ai (https://twitter.com/BagelDB_ai)
  
We ran `make format`, `make lint` and `make test` locally.

Followed the contribution guideline thoroughly
https://github.com/hwchase17/langchain/blob/master/.github/CONTRIBUTING.md

---------

Co-authored-by: Towhid1 <nurulaktertowhid@gmail.com>
2023-08-10 16:48:36 -07:00
Luca Foppiano
dfb93dd2b5
Improved grobid documentation (#9025)
- Description: Improvement in the Grobid loader documentation, typos and
suggesting to use the docker image instead of installing Grobid in local
(the documentation was also limited to Mac, while docker allow running
in any platform)
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: @whitenoise
2023-08-10 10:47:22 -04:00
arjunbansal
a2681f950d
add instructions on integrating Log10 (#8938)
- Description: Instruction for integration with Log10: an [open
source](https://github.com/log10-io/log10) proxiless LLM data management
and application development platform that lets you log, debug and tag
your Langchain calls
  - Tag maintainer: @baskaryan
  - Twitter handle: @log10io @coffeephoenix

Several examples showing the integration included
[here](https://github.com/log10-io/log10/tree/main/examples/logging) and
in the PR
2023-08-08 19:15:31 -07:00
Aarav Borthakur
3f64b8a761
Integrate Rockset as a chat history store (#8940)
Description: Adds Rockset as a chat history store
Dependencies: no changes
Tag maintainer: @hwchase17

This PR passes linting and testing. 

I added a test for the integration and an example notebook showing its
use.
2023-08-08 18:54:07 -07:00
Leonid Ganeline
33a2f58fbf
tensoflow_datasets document loader (#8721)
This PR adds `tensoflow_datasets` document loader
2023-08-08 15:19:28 -04:00
Leonid Ganeline
2d078c7767
PubMed document loader (#8893)
- added `PubMed Document Loader` artifacts; ut-s; examples 
- fixed `PubMed utility`; ut-s

@hwchase17
2023-08-08 14:26:03 -04:00
Maurits de Groot
61c2d918c6
Fixed inaccurate import in integrations:providers:bedrock documentation (#8915)
Description:
Fixed inaccurate import in integrations:providers:bedrock documentation

In the current version of the bedrock documentation, page
https://python.langchain.com/docs/integrations/providers/bedrock it
states that the import is from langchain import Bedrock

This has been changed to from langchain.llms.bedrock import Bedrock as
stated in https://python.langchain.com/docs/integrations/llms/bedrock

Issue:
Not applicable

Dependencies
No dependencies required

Tag maintainer
@baskaryan

Twitter handle:
Not applicable
2023-08-08 07:24:36 -07:00
David vonThenen
40079d4936
Introduce Nebula LLM to LangChain (#8876)
## Description

This PR adds Nebula to the available LLMs in LangChain.

Nebula is an LLM focused on conversation understanding and enables users
to extract conversation insights from video, audio, text, and chat-based
conversations. These conversations can occur between any mix of human or
AI participants.

Examples of some questions you could ask Nebula from a given
conversation are:
- What could be the customer’s pain points based on the conversation?
- What sales opportunities can be identified from this conversation?
- What best practices can be derived from this conversation for future
customer interactions?

You can read more about Nebula here:

https://symbl.ai/blog/extract-insights-symbl-ai-generative-ai-recall-ai-meetings/

#### Integration Test 

An integration test is added, but it requires network access. Since
Nebula is fully managed like OpenAI, network access is required to
exercise the integration test.

#### Linting

- [x] make lint
- [x] make test (TODO: there seems to be a failure in another
non-related test??? Need to check on this.)
- [x] make format

### Dependencies

No new dependencies were introduced.

### Twitter handle

[@symbldotai](https://twitter.com/symbldotai)
[@dvonthenen](https://twitter.com/dvonthenen)


If you have any questions, please let me know.

cc: @hwchase17, @baskaryan

---------

Co-authored-by: dvonthenen <david.vonthenen@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
2023-08-07 13:15:26 -07:00
rjanardhan3
affaaea87b
Updates fireworks (#8765)
<!-- Thank you for contributing to LangChain!

Replace this comment with:
  - Description: Updates to Fireworks Documentation, 
  - Issue: N/A,
  - Dependencies: N/A,
  - Tag maintainer: @rlancemartin,

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-04 10:32:22 -07:00
Leonid Ganeline
1335f2b9f8
MLflow examples (#8642)
Updated `MLflow` examples with links to the examples from MLflow

 @baskaryan
2023-08-02 13:30:28 -07:00
rjanardhan3
68113348cc
Fireworks integration (#8322)
Description - Integrates Fireworks within Langchain LLMs to allow users
to use Fireworks models with Langchain, mainly for summarization.

Issue - Not applicable
Dependencies - None
Tag maintainer - @rlancemartin

---------

Co-authored-by: Raj Janardhan <rajjanardhan@Rajs-Laptop.attlocal.net>
2023-08-01 21:17:26 -07:00
Matt Robinson
8961c720b8
docs: update unstructured install instructions (#8596)
### Summary

Updates the `unstructured` install instructions. For
`unstructured>=0.9.0`, dependencies are broken out by document type and
the base `unstructured` package includes fewer dependencies. `pip
install "unstructured[local-inference]"` has been replace by `pip
install "unstructured[all-docs]"`, though the `local-inference` extra is
still supported for the time being.

### Reviewers

- @rlancemartin
- @eyurtsev
- @hwchase17
2023-08-01 14:17:49 -07:00
Bagatur
73072d3db8
mv (#8595) 2023-08-01 14:17:04 -07:00
Tesfagabir Meharizghi
a7000ee89e
Callback handler for Amazon SageMaker Experiments (#8587)
## Description

This PR implements a callback handler for SageMaker Experiments which is
similar to that of mlflow.
* When creating the callback handler, it takes the experiment's run
object as an argument. All the callback outputs are then logged to the
run object.
* The output of each callback action (e.g., `on_llm_start`) is saved to
S3 bucket as json file.
* Optionally, you can also log additional information such as the LLM
hyper-parameters to the same run object.
* Once the callback object is no more needed, you will need to call the
`flush_tracker()` method. This makes sure that any intermediate files
are deleted.
* A separate notebook example is provided to show how the callback is
used.

@3coins  @agola11

---------

Co-authored-by: Tesfagabir Meharizghi <mehariz@amazon.com>
2023-08-01 13:47:08 -07:00
William FH
b7c0eb9ecb
Wfh/ref links (#8454) 2023-07-29 08:44:32 -07:00