- **Description:** Support IN and LIKE comparators in Milvus
self-querying retriever, based on [Boolean Expression
Rules](https://milvus.io/docs/boolean.md)
- **Issue:** No
- **Dependencies:** No
- **Twitter handle:** No
Signed-off-by: ChengZi <chen.zhang@zilliz.com>
**Description**: This PR fixes an error in the documentation for Azure
Cosmos DB Integration.
**Issue**: The correct way to import `AzureCosmosDBVectorSearch` is
```python
from langchain_community.vectorstores.azure_cosmos_db import (
AzureCosmosDBVectorSearch,
)
```
While the
[documentation](https://python.langchain.com/docs/integrations/vectorstores/azure_cosmos_db)
states it to be
```python
from langchain_community.vectorstores.azure_cosmos_db_vector_search import (
AzureCosmosDBVectorSearch,
CosmosDBSimilarityType,
)
```
As you can see in
[azure_cosmos_db.py](c323742f4f/libs/langchain/langchain/vectorstores/azure_cosmos_db.py (L1C45-L2))
**Dependencies:**: None
**Twitter handle**: None
- **Description:** This handles the cohere response when documents
aren't included in the response
- **Issue:** N/A
- **Dependencies:** N/A
- **Twitter handle:** N/A
- bumps package post versions for packages without current unreleased
updates
- will bump package version in release prs associated with packages that
do have changes (mistral, vertex)
- **Description:** Adds MistralAIEmbeddings class for embeddings, using
the new official API.
- **Dependencies:** mistralai
- **Tag maintainer**: @efriis, @hwchase17
- **Twitter handle:** @LMS_David_RS
Create `integrations/text_embedding/mistralai.ipynb`: an example
notebook for MistralAIEmbeddings class
Modify `embeddings/__init__.py`: Import the class
Create `embeddings/mistralai.py`: The embedding class
Create `integration_tests/embeddings/test_mistralai.py`: The test file.
---------
Co-authored-by: Erick Friis <erick@langchain.dev>
**Description:**
Implement `adelete` function from `VectorStore` in `Qdrant` to support
other asynchronous flows such as async indexing (`aindex`) which
requires `adelete` to be implemented. Since `Qdrant` can be passed an
async qdrant client, this can be supported easily.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
This PR addresses an issue in OpenAIWhisperParserLocal where requesting
CUDA without availability leads to an AttributeError #15143
Changes:
- Refactored Logic for CUDA Availability: The initialization now
includes a check for CUDA availability. If CUDA is not available, the
code falls back to using the CPU. This ensures seamless operation
without manual intervention.
- Parameterizing Batch Size and Chunk Size: The batch_size and
chunk_size are now configurable parameters, offering greater flexibility
and optimization options based on the specific requirements of the use
case.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
**Description:** This new feature enhances the flexibility of pipeline
integration, particularly when working with RESTful APIs.
``JsonRequestsWrapper`` allows for the decoding of JSON output, instead
of the only option for text output.
---------
Co-authored-by: Zhichao HAN <hanzhichao2000@hotmail.com>
- **Description:** Adds documentation for the
`FirestoreChatMessageHistory` integration and lists integration in
Google's documentation
- **Issue:** NA
- **Dependencies:** No
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Fixed the issue mentioned in #15698 for SlackGetChannel Tool.
@baskaryan.
---------
Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** add deprecated warning for ErnieBotChat and
ErnieEmbeddings.
- These two classes **lack maintenance** and do not use the sdk provided
by qianfan, which means hard to implement some key feature like
streaming.
- The alternative `langchain_community.chat_models.QianfanChatEndpoint`
and `langchain_community.embeddings.QianfanEmbeddingsEndpoint` can
completely replace these two classes, only need to change configuration
items.
- **Issue:** None,
- **Dependencies:** None,
- **Twitter handle:** None
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
**Description**: `zip` is iterator that will only produce result once,
so the previous code will cause the `embeddings` to be an empty list.
**Issue**: I could not find a related issue.
**Dependencies**: this PR does not introduce or affect dependencies.
---------
Co-authored-by: Bagatur <baskaryan@gmail.com>
- **Description:** docs update following the changes introduced in
#15879
<!-- Thank you for contributing to LangChain!
Please title your PR "<package>: <description>", where <package> is
whichever of langchain, community, core, experimental, etc. is being
modified.
Replace this entire comment with:
- **Description:** a description of the change,
- **Issue:** the issue # it fixes if applicable,
- **Dependencies:** any dependencies required for this change,
- **Twitter handle:** we announce bigger features on Twitter. If your PR
gets announced, and you'd like a mention, we'll gladly shout you out!
Please make sure your PR is passing linting and testing before
submitting. Run `make format`, `make lint` and `make test` from the root
of the package you've modified to check this locally.
See contribution guidelines for more information on how to write/run
tests, lint, etc: https://python.langchain.com/docs/contributing/
If you're adding a new integration, please include:
1. a test for the integration, preferably unit tests that do not rely on
network access,
2. an example notebook showing its use. It lives in
`docs/docs/integrations` directory.
If no one reviews your PR within a few days, please @-mention one of
@baskaryan, @eyurtsev, @hwchase17.
-->
BigQuery vector search lets you use GoogleSQL to do semantic search,
using vector indexes for fast but approximate results, or using brute
force for exact results.
This PR:
1. Add `metadata[_job_ib]` in Document returned by any similarity search
2. Add `explore_job_stats` to enable users to explore job statistics and
better the debuggability
3. Set the minimum row limit for running create vector index.
## Description
In this update, I addressed the missing implementation for
atransform_document, which is the asynchronous counterpart of
transform_document in Doctran.
### Usage Example:
```py
# Instantiate DoctranPropertyExtractor with specified properties
property_extractor = DoctranPropertyExtractor(properties=properties)
# Asynchronously extract properties from a list of documents
extracted_document = await property_extractor.atransform_documents(
documents, properties=properties
)
# Display metadata of the first extracted document
print(json.dumps(extracted_document[0].metadata, indent=2))
```
## Issue
- Pull request #14525 has caused a break in the aforementioned code.
Instead of removing an asynchronous implementation of a function,
consider implementing a synchronous version alongside it.