mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
docs: providers
update 2 (#18407)
Formatted pages into a consistent form. Added descriptions and links when needed.
This commit is contained in:
parent
239f0a615e
commit
fad308a764
@ -1,49 +1,71 @@
|
|||||||
# Astra DB
|
# Astra DB
|
||||||
|
|
||||||
> DataStax [Astra DB](https://docs.datastax.com/en/astra/home/astra.html) is a serverless vector-capable database built on Apache Cassandra® and made conveniently available
|
> [DataStax Astra DB](https://docs.datastax.com/en/astra/home/astra.html) is a serverless
|
||||||
|
> vector-capable database built on `Apache Cassandra®`and made conveniently available
|
||||||
> through an easy-to-use JSON API.
|
> through an easy-to-use JSON API.
|
||||||
|
|
||||||
### Setup
|
See a [tutorial provided by DataStax](https://docs.datastax.com/en/astra/astra-db-vector/tutorials/chatbot.html).
|
||||||
|
|
||||||
|
## Installation and Setup
|
||||||
|
|
||||||
Install the following Python package:
|
Install the following Python package:
|
||||||
|
```bash
|
||||||
|
pip install "langchain-astradb>=0.0.1"
|
||||||
|
```
|
||||||
|
|
||||||
|
Some old integrations require the `astrapy` package:
|
||||||
```bash
|
```bash
|
||||||
pip install "astrapy>=0.7.1"
|
pip install "astrapy>=0.7.1"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Get the [connection secrets](https://docs.datastax.com/en/astra/astra-db-vector/get-started/quickstart.html).
|
||||||
|
Set up the following environment variables:
|
||||||
|
|
||||||
|
```python
|
||||||
|
ASTRA_DB_APPLICATION_TOKEN="TOKEN"
|
||||||
|
ASTRA_DB_API_ENDPOINT="API_ENDPOINT"
|
||||||
|
```
|
||||||
|
|
||||||
## Vector Store
|
## Vector Store
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_astradb import AstraDBVectorStore
|
from langchain_astradb import AstraDBVectorStore
|
||||||
|
|
||||||
vector_store = AstraDBVectorStore(
|
vector_store = AstraDBVectorStore(
|
||||||
embedding=my_embedding,
|
embedding=my_embedding,
|
||||||
collection_name="my_store",
|
collection_name="my_store",
|
||||||
api_endpoint="...",
|
api_endpoint=ASTRA_DB_API_ENDPOINT,
|
||||||
token="...",
|
token=ASTRA_DB_APPLICATION_TOKEN,
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
Learn more in the [example notebook](/docs/integrations/vectorstores/astradb).
|
Learn more in the [example notebook](/docs/integrations/vectorstores/astradb).
|
||||||
|
|
||||||
|
See the [example provided by DataStax](https://docs.datastax.com/en/astra/astra-db-vector/integrations/langchain.html).
|
||||||
|
|
||||||
## Chat message history
|
## Chat message history
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_astradb import AstraDBChatMessageHistory
|
from langchain_astradb import AstraDBChatMessageHistory
|
||||||
|
|
||||||
message_history = AstraDBChatMessageHistory(
|
message_history = AstraDBChatMessageHistory(
|
||||||
session_id="test-session",
|
session_id="test-session",
|
||||||
api_endpoint="...",
|
api_endpoint=ASTRA_DB_API_ENDPOINT,
|
||||||
token="...",
|
token=ASTRA_DB_APPLICATION_TOKEN,
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
See the [usage example](/docs/integrations/memory/astradb_chat_message_history#example).
|
||||||
|
|
||||||
## LLM Cache
|
## LLM Cache
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain.globals import set_llm_cache
|
from langchain.globals import set_llm_cache
|
||||||
from langchain_community.cache import AstraDBCache
|
from langchain_community.cache import AstraDBCache
|
||||||
|
|
||||||
set_llm_cache(AstraDBCache(
|
set_llm_cache(AstraDBCache(
|
||||||
api_endpoint="...",
|
api_endpoint=ASTRA_DB_API_ENDPOINT,
|
||||||
token="...",
|
token=ASTRA_DB_APPLICATION_TOKEN,
|
||||||
))
|
))
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -54,11 +76,12 @@ Learn more in the [example notebook](/docs/integrations/llms/llm_caching#astra-d
|
|||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain.globals import set_llm_cache
|
from langchain.globals import set_llm_cache
|
||||||
from langchain_community.cache import AstraDBSemanticCache
|
from langchain_community.cache import
|
||||||
|
|
||||||
set_llm_cache(AstraDBSemanticCache(
|
set_llm_cache(AstraDBSemanticCache(
|
||||||
embedding=my_embedding,
|
embedding=my_embedding,
|
||||||
api_endpoint="...",
|
api_endpoint=ASTRA_DB_API_ENDPOINT,
|
||||||
token="...",
|
token=ASTRA_DB_APPLICATION_TOKEN,
|
||||||
))
|
))
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -70,10 +93,11 @@ Learn more in the [example notebook](/docs/integrations/memory/astradb_chat_mess
|
|||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.document_loaders import AstraDBLoader
|
from langchain_community.document_loaders import AstraDBLoader
|
||||||
|
|
||||||
loader = AstraDBLoader(
|
loader = AstraDBLoader(
|
||||||
collection_name="my_collection",
|
collection_name="my_collection",
|
||||||
api_endpoint="...",
|
api_endpoint=ASTRA_DB_API_ENDPOINT,
|
||||||
token="..."
|
token=ASTRA_DB_APPLICATION_TOKEN,
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -88,8 +112,8 @@ from langchain.retrievers.self_query.base import SelfQueryRetriever
|
|||||||
vector_store = AstraDBVectorStore(
|
vector_store = AstraDBVectorStore(
|
||||||
embedding=my_embedding,
|
embedding=my_embedding,
|
||||||
collection_name="my_store",
|
collection_name="my_store",
|
||||||
api_endpoint="...",
|
api_endpoint=ASTRA_DB_API_ENDPOINT,
|
||||||
token="...",
|
token=ASTRA_DB_APPLICATION_TOKEN,
|
||||||
)
|
)
|
||||||
|
|
||||||
retriever = SelfQueryRetriever.from_llm(
|
retriever = SelfQueryRetriever.from_llm(
|
||||||
@ -105,11 +129,12 @@ Learn more in the [example notebook](/docs/integrations/retrievers/self_query/as
|
|||||||
## Store
|
## Store
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_astradb import AstraDBStore
|
from langchain_community.storage import AstraDBStore
|
||||||
|
|
||||||
store = AstraDBStore(
|
store = AstraDBStore(
|
||||||
collection_name="my_kv_store",
|
collection_name="my_kv_store",
|
||||||
api_endpoint="...",
|
api_endpoint=ASTRA_DB_API_ENDPOINT,
|
||||||
token="..."
|
token=ASTRA_DB_APPLICATION_TOKEN,
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
@ -118,11 +143,12 @@ Learn more in the [example notebook](/docs/integrations/stores/astradb#astradbst
|
|||||||
## Byte Store
|
## Byte Store
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_astradb import AstraDBByteStore
|
from langchain_community.storage import AstraDBByteStore
|
||||||
|
|
||||||
store = AstraDBByteStore(
|
store = AstraDBByteStore(
|
||||||
collection_name="my_kv_store",
|
collection_name="my_kv_store",
|
||||||
api_endpoint="...",
|
api_endpoint=ASTRA_DB_API_ENDPOINT,
|
||||||
token="..."
|
token=ASTRA_DB_APPLICATION_TOKEN,
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -9,8 +9,7 @@ pip install awadb
|
|||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
## Vector Store
|
## Vector store
|
||||||
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.vectorstores import AwaDB
|
from langchain_community.vectorstores import AwaDB
|
||||||
@ -19,7 +18,7 @@ from langchain_community.vectorstores import AwaDB
|
|||||||
See a [usage example](/docs/integrations/vectorstores/awadb).
|
See a [usage example](/docs/integrations/vectorstores/awadb).
|
||||||
|
|
||||||
|
|
||||||
## Text Embedding Model
|
## Embedding models
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.embeddings import AwaEmbeddings
|
from langchain_community.embeddings import AwaEmbeddings
|
||||||
|
@ -1,16 +1,33 @@
|
|||||||
# Baichuan
|
# Baichuan
|
||||||
|
|
||||||
>[Baichuan Inc.](https://www.baichuan-ai.com/) is a Chinese startup in the era of AGI, dedicated to addressing fundamental human needs: Efficiency, Health, and Happiness.
|
>[Baichuan Inc.](https://www.baichuan-ai.com/) is a Chinese startup in the era of AGI,
|
||||||
|
> dedicated to addressing fundamental human needs: Efficiency, Health, and Happiness.
|
||||||
|
|
||||||
## Visit Us
|
|
||||||
Visit us at https://www.baichuan-ai.com/.
|
|
||||||
Register and get an API key if you are trying out our APIs.
|
|
||||||
|
|
||||||
## Baichuan LLM Endpoint
|
## Installation and Setup
|
||||||
An example is available at [example](/docs/integrations/llms/baichuan)
|
|
||||||
|
|
||||||
## Baichuan Chat Model
|
Register and get an API key [here](https://platform.baichuan-ai.com/).
|
||||||
An example is available at [example](/docs/integrations/chat/baichuan).
|
|
||||||
|
|
||||||
## Baichuan Text Embedding Model
|
## LLMs
|
||||||
An example is available at [example](/docs/integrations/text_embedding/baichuan)
|
|
||||||
|
See a [usage example](/docs/integrations/llms/baichuan).
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain_community.llms import BaichuanLLM
|
||||||
|
```
|
||||||
|
|
||||||
|
## Chat models
|
||||||
|
|
||||||
|
See a [usage example](/docs/integrations/chat/baichuan).
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain_community.chat_models import ChatBaichuan
|
||||||
|
```
|
||||||
|
|
||||||
|
## Embedding models
|
||||||
|
|
||||||
|
See a [usage example](/docs/integrations/text_embedding/baichuan).
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langchain_community.embeddings import BaichuanTextEmbeddings
|
||||||
|
```
|
||||||
|
@ -1,18 +1,20 @@
|
|||||||
# Banana
|
# Banana
|
||||||
|
|
||||||
Banana provided serverless GPU inference for AI models, including a CI/CD build pipeline and a simple Python framework (Potassium) to server your models.
|
>[Banana](https://www.banana.dev/) provided serverless GPU inference for AI models,
|
||||||
|
> a CI/CD build pipeline and a simple Python framework (`Potassium`) to server your models.
|
||||||
|
|
||||||
This page covers how to use the [Banana](https://www.banana.dev) ecosystem within LangChain.
|
This page covers how to use the [Banana](https://www.banana.dev) ecosystem within LangChain.
|
||||||
|
|
||||||
It is broken into two parts:
|
|
||||||
* installation and setup,
|
|
||||||
* and then references to specific Banana wrappers.
|
|
||||||
|
|
||||||
## Installation and Setup
|
## Installation and Setup
|
||||||
|
|
||||||
- Install with `pip install banana-dev`
|
- Install the python package `banana-dev`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install banana-dev
|
||||||
|
```
|
||||||
|
|
||||||
- Get an Banana api key from the [Banana.dev dashboard](https://app.banana.dev) and set it as an environment variable (`BANANA_API_KEY`)
|
- Get an Banana api key from the [Banana.dev dashboard](https://app.banana.dev) and set it as an environment variable (`BANANA_API_KEY`)
|
||||||
- Get your model's key and url slug from the model's details page
|
- Get your model's key and url slug from the model's details page.
|
||||||
|
|
||||||
## Define your Banana Template
|
## Define your Banana Template
|
||||||
|
|
||||||
@ -24,7 +26,7 @@ Other starter repos are available [here](https://github.com/orgs/bananaml/reposi
|
|||||||
|
|
||||||
## Build the Banana app
|
## Build the Banana app
|
||||||
|
|
||||||
To use Banana apps within Langchain, they must include the `outputs` key
|
To use Banana apps within Langchain, you must include the `outputs` key
|
||||||
in the returned json, and the value must be a string.
|
in the returned json, and the value must be a string.
|
||||||
|
|
||||||
```python
|
```python
|
||||||
@ -55,18 +57,12 @@ def handler(context: dict, request: Request) -> Response:
|
|||||||
|
|
||||||
This example is from the `app.py` file in [CodeLlama-7B-Instruct-GPTQ](https://github.com/bananaml/demo-codellama-7b-instruct-gptq).
|
This example is from the `app.py` file in [CodeLlama-7B-Instruct-GPTQ](https://github.com/bananaml/demo-codellama-7b-instruct-gptq).
|
||||||
|
|
||||||
## Wrappers
|
|
||||||
|
|
||||||
### LLM
|
## LLM
|
||||||
|
|
||||||
Within Langchain, there exists a Banana LLM wrapper, which you can access with
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.llms import Banana
|
from langchain_community.llms import Banana
|
||||||
```
|
```
|
||||||
|
|
||||||
You need to provide a model key and model url slug, which you can get from the model's details page in the [Banana.dev dashboard](https://app.banana.dev).
|
See a [usage example](/docs/integrations/llms/banana).
|
||||||
|
|
||||||
```python
|
|
||||||
llm = Banana(model_key="YOUR_MODEL_KEY", model_url_slug="YOUR_MODEL_URL_SLUG")
|
|
||||||
```
|
|
||||||
|
@ -1,18 +1,23 @@
|
|||||||
# Baseten
|
# Baseten
|
||||||
|
|
||||||
[Baseten](https://baseten.co) provides all the infrastructure you need to deploy and serve ML models performantly, scalably, and cost-efficiently.
|
>[Baseten](https://baseten.co) is a provider of all the infrastructure you need to deploy and serve
|
||||||
|
> ML models performantly, scalably, and cost-efficiently.
|
||||||
|
|
||||||
As a model inference platform, Baseten is a `Provider` in the LangChain ecosystem. The Baseten integration currently implements a single `Component`, LLMs, but more are planned!
|
>As a model inference platform, `Baseten` is a `Provider` in the LangChain ecosystem.
|
||||||
|
The `Baseten` integration currently implements a single `Component`, LLMs, but more are planned!
|
||||||
|
|
||||||
Baseten lets you run both open source models like Llama 2 or Mistral and run proprietary or fine-tuned models on dedicated GPUs. If you're used to a provider like OpenAI, using Baseten has a few differences:
|
>`Baseten` lets you run both open source models like Llama 2 or Mistral and run proprietary or
|
||||||
|
fine-tuned models on dedicated GPUs. If you're used to a provider like OpenAI, using Baseten has a few differences:
|
||||||
|
|
||||||
* Rather than paying per token, you pay per minute of GPU used.
|
>* Rather than paying per token, you pay per minute of GPU used.
|
||||||
* Every model on Baseten uses [Truss](https://truss.baseten.co/welcome), our open-source model packaging framework, for maximum customizability.
|
>* Every model on Baseten uses [Truss](https://truss.baseten.co/welcome), our open-source model packaging framework, for maximum customizability.
|
||||||
* While we have some [OpenAI ChatCompletions-compatible models](https://docs.baseten.co/api-reference/openai), you can define your own I/O spec with Truss.
|
>* While we have some [OpenAI ChatCompletions-compatible models](https://docs.baseten.co/api-reference/openai), you can define your own I/O spec with `Truss`.
|
||||||
|
|
||||||
You can learn more about Baseten in [our docs](https://docs.baseten.co/) or read on for LangChain-specific info.
|
>[Learn more](https://docs.baseten.co/deploy/lifecycle) about model IDs and deployments.
|
||||||
|
|
||||||
## Setup: LangChain + Baseten
|
>Learn more about Baseten in [the Baseten docs](https://docs.baseten.co/).
|
||||||
|
|
||||||
|
## Installation and Setup
|
||||||
|
|
||||||
You'll need two things to use Baseten models with LangChain:
|
You'll need two things to use Baseten models with LangChain:
|
||||||
|
|
||||||
@ -25,47 +30,10 @@ Export your API key to your as an environment variable called `BASETEN_API_KEY`.
|
|||||||
export BASETEN_API_KEY="paste_your_api_key_here"
|
export BASETEN_API_KEY="paste_your_api_key_here"
|
||||||
```
|
```
|
||||||
|
|
||||||
## Component guide: LLMs
|
## LLMs
|
||||||
|
|
||||||
Baseten integrates with LangChain through the [LLM component](https://python.langchain.com/docs/integrations/llms/baseten), which provides a standardized and interoperable interface for models that are deployed on your Baseten workspace.
|
See a [usage example](/docs/integrations/llms/baseten).
|
||||||
|
|
||||||
You can deploy foundation models like Mistral and Llama 2 with one click from the [Baseten model library](https://app.baseten.co/explore/) or if you have your own model, [deploy it with Truss](https://truss.baseten.co/welcome).
|
|
||||||
|
|
||||||
In this example, we'll work with Mistral 7B. [Deploy Mistral 7B here](https://app.baseten.co/explore/mistral_7b_instruct) and follow along with the deployed model's ID, found in the model dashboard.
|
|
||||||
|
|
||||||
To use this module, you must:
|
|
||||||
|
|
||||||
* Export your Baseten API key as the environment variable BASETEN_API_KEY
|
|
||||||
* Get the model ID for your model from your Baseten dashboard
|
|
||||||
* Identify the model deployment ("production" for all model library models)
|
|
||||||
|
|
||||||
[Learn more](https://docs.baseten.co/deploy/lifecycle) about model IDs and deployments.
|
|
||||||
|
|
||||||
Production deployment (standard for model library models)
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.llms import Baseten
|
from langchain_community.llms import Baseten
|
||||||
|
|
||||||
mistral = Baseten(model="MODEL_ID", deployment="production")
|
|
||||||
mistral("What is the Mistral wind?")
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Development deployment
|
|
||||||
|
|
||||||
```python
|
|
||||||
from langchain_community.llms import Baseten
|
|
||||||
|
|
||||||
mistral = Baseten(model="MODEL_ID", deployment="development")
|
|
||||||
mistral("What is the Mistral wind?")
|
|
||||||
```
|
|
||||||
|
|
||||||
Other published deployment
|
|
||||||
|
|
||||||
```python
|
|
||||||
from langchain_community.llms import Baseten
|
|
||||||
|
|
||||||
mistral = Baseten(model="MODEL_ID", deployment="DEPLOYMENT_ID")
|
|
||||||
mistral("What is the Mistral wind?")
|
|
||||||
```
|
|
||||||
|
|
||||||
Streaming LLM output, chat completions, embeddings models, and more are all supported on the Baseten platform and coming soon to our LangChain integration. Contact us at [support@baseten.co](mailto:support@baseten.co) with any questions about using Baseten with LangChain.
|
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
# Beam
|
# Beam
|
||||||
|
|
||||||
This page covers how to use Beam within LangChain.
|
>[Beam](https://www.beam.cloud/) is a cloud computing platform that allows you to run your code
|
||||||
It is broken into two parts: installation and setup, and then references to specific Beam wrappers.
|
> on remote servers with GPUs.
|
||||||
|
|
||||||
|
|
||||||
## Installation and Setup
|
## Installation and Setup
|
||||||
|
|
||||||
@ -9,84 +10,19 @@ It is broken into two parts: installation and setup, and then references to spec
|
|||||||
- Install the Beam CLI with `curl https://raw.githubusercontent.com/slai-labs/get-beam/main/get-beam.sh -sSfL | sh`
|
- Install the Beam CLI with `curl https://raw.githubusercontent.com/slai-labs/get-beam/main/get-beam.sh -sSfL | sh`
|
||||||
- Register API keys with `beam configure`
|
- Register API keys with `beam configure`
|
||||||
- Set environment variables (`BEAM_CLIENT_ID`) and (`BEAM_CLIENT_SECRET`)
|
- Set environment variables (`BEAM_CLIENT_ID`) and (`BEAM_CLIENT_SECRET`)
|
||||||
- Install the Beam SDK `pip install beam-sdk`
|
- Install the Beam SDK:
|
||||||
|
|
||||||
## Wrappers
|
```bash
|
||||||
|
pip install beam-sdk
|
||||||
|
```
|
||||||
|
|
||||||
### LLM
|
|
||||||
|
|
||||||
There exists a Beam LLM wrapper, which you can access with
|
## LLMs
|
||||||
|
|
||||||
|
See a [usage example](/docs/integrations/llms/beam).
|
||||||
|
|
||||||
|
See another example in the [Beam documentation](https://docs.beam.cloud/examples/langchain).
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.llms.beam import Beam
|
from langchain_community.llms.beam import Beam
|
||||||
```
|
```
|
||||||
|
|
||||||
## Define your Beam app.
|
|
||||||
|
|
||||||
This is the environment you’ll be developing against once you start the app.
|
|
||||||
It's also used to define the maximum response length from the model.
|
|
||||||
```python
|
|
||||||
llm = Beam(model_name="gpt2",
|
|
||||||
name="langchain-gpt2-test",
|
|
||||||
cpu=8,
|
|
||||||
memory="32Gi",
|
|
||||||
gpu="A10G",
|
|
||||||
python_version="python3.8",
|
|
||||||
python_packages=[
|
|
||||||
"diffusers[torch]>=0.10",
|
|
||||||
"transformers",
|
|
||||||
"torch",
|
|
||||||
"pillow",
|
|
||||||
"accelerate",
|
|
||||||
"safetensors",
|
|
||||||
"xformers",],
|
|
||||||
max_length="50",
|
|
||||||
verbose=False)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Deploy your Beam app
|
|
||||||
|
|
||||||
Once defined, you can deploy your Beam app by calling your model's `_deploy()` method.
|
|
||||||
|
|
||||||
```python
|
|
||||||
llm._deploy()
|
|
||||||
```
|
|
||||||
|
|
||||||
## Call your Beam app
|
|
||||||
|
|
||||||
Once a beam model is deployed, it can be called by callying your model's `_call()` method.
|
|
||||||
This returns the GPT2 text response to your prompt.
|
|
||||||
|
|
||||||
```python
|
|
||||||
response = llm._call("Running machine learning on a remote GPU")
|
|
||||||
```
|
|
||||||
|
|
||||||
An example script which deploys the model and calls it would be:
|
|
||||||
|
|
||||||
```python
|
|
||||||
from langchain_community.llms.beam import Beam
|
|
||||||
import time
|
|
||||||
|
|
||||||
llm = Beam(model_name="gpt2",
|
|
||||||
name="langchain-gpt2-test",
|
|
||||||
cpu=8,
|
|
||||||
memory="32Gi",
|
|
||||||
gpu="A10G",
|
|
||||||
python_version="python3.8",
|
|
||||||
python_packages=[
|
|
||||||
"diffusers[torch]>=0.10",
|
|
||||||
"transformers",
|
|
||||||
"torch",
|
|
||||||
"pillow",
|
|
||||||
"accelerate",
|
|
||||||
"safetensors",
|
|
||||||
"xformers",],
|
|
||||||
max_length="50",
|
|
||||||
verbose=False)
|
|
||||||
|
|
||||||
llm._deploy()
|
|
||||||
|
|
||||||
response = llm._call("Running machine learning on a remote GPU")
|
|
||||||
|
|
||||||
print(response)
|
|
||||||
```
|
|
@ -1,37 +1,20 @@
|
|||||||
# NIBittensor
|
# Bittensor
|
||||||
|
|
||||||
This page covers how to use the BittensorLLM inference runtime within LangChain.
|
>[Neural Internet Bittensor](https://neuralinternet.ai/) network, an open source protocol
|
||||||
It is broken into two parts: installation and setup, and then examples of NIBittensorLLM usage.
|
> that powers a decentralized, blockchain-based, machine learning network.
|
||||||
|
|
||||||
## Installation and Setup
|
## Installation and Setup
|
||||||
|
|
||||||
- Install the Python package with `pip install langchain`
|
Get your API_KEY from [Neural Internet](https://api.neuralinternet.ai).
|
||||||
|
|
||||||
## Wrappers
|
You can [analyze API_KEYS](https://api.neuralinternet.ai/api-keys)
|
||||||
|
and [logs of your usage](https://api.neuralinternet.ai/logs).
|
||||||
|
|
||||||
### LLM
|
|
||||||
|
|
||||||
There exists a NIBittensor LLM wrapper, which you can access with:
|
## LLMs
|
||||||
|
|
||||||
|
See a [usage example](/docs/integrations/llms/bittensor).
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.llms import NIBittensorLLM
|
from langchain_community.llms import NIBittensorLLM
|
||||||
```
|
```
|
||||||
|
|
||||||
It provides a unified interface for all models:
|
|
||||||
|
|
||||||
```python
|
|
||||||
llm = NIBittensorLLM(system_prompt="Your task is to provide concise and accurate response based on user prompt")
|
|
||||||
|
|
||||||
print(llm('Write a fibonacci function in python with golder ratio'))
|
|
||||||
```
|
|
||||||
|
|
||||||
Multiple responses from top miners can be accessible using the `top_responses` parameter:
|
|
||||||
|
|
||||||
```python
|
|
||||||
multi_response_llm = NIBittensorLLM(top_responses=10)
|
|
||||||
multi_resp = multi_response_llm("What is Neural Network Feeding Mechanism?")
|
|
||||||
json_multi_resp = json.loads(multi_resp)
|
|
||||||
|
|
||||||
print(json_multi_resp)
|
|
||||||
```
|
|
||||||
|
|
||||||
|
@ -1,24 +1,16 @@
|
|||||||
# BREEBS (Open Knowledge)
|
# Breebs (Open Knowledge)
|
||||||
|
|
||||||
[BREEBS](https://www.breebs.com/) is an open collaborative knowledge platform.
|
>[Breebs](https://www.breebs.com/) is an open collaborative knowledge platform.
|
||||||
Anybody can create a Breeb, a knowledge capsule based on PDFs stored on a Google Drive folder.
|
>Anybody can create a `Breeb`, a knowledge capsule based on PDFs stored on a Google Drive folder.
|
||||||
A breeb can be used by any LLM/chatbot to improve its expertise, reduce hallucinations and give access to sources.
|
>A `Breeb` can be used by any LLM/chatbot to improve its expertise, reduce hallucinations and give access to sources.
|
||||||
Behind the scenes, Breebs implements several Retrieval Augmented Generation (RAG) models to seamlessly provide useful context at each iteration.
|
>Behind the scenes, `Breebs` implements several `Retrieval Augmented Generation (RAG)` models
|
||||||
|
> to seamlessly provide useful context at each iteration.
|
||||||
|
|
||||||
## List of available Breebs
|
|
||||||
|
|
||||||
To get the full list of Breebs, including their key (breeb_key) and description :
|
|
||||||
https://breebs.promptbreeders.com/web/listbreebs.
|
|
||||||
Dozens of Breebs have already been created by the community and are freely available for use. They cover a wide range of expertise, from organic chemistry to mythology, as well as tips on seduction and decentralized finance.
|
|
||||||
|
|
||||||
## Creating a new Breeb
|
|
||||||
|
|
||||||
To generate a new Breeb, simply compile PDF files in a publicly shared Google Drive folder and initiate the creation process on the [BREEBS website](https://www.breebs.com/) by clicking the "Create Breeb" button. You can currently include up to 120 files, with a total character limit of 15 million.
|
|
||||||
|
|
||||||
## Retriever
|
## Retriever
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain.retrievers import BreebsRetriever
|
from langchain.retrievers import BreebsRetriever
|
||||||
```
|
```
|
||||||
|
|
||||||
# Example
|
[See a usage example (Retrieval & ConversationalRetrievalChain)](/docs/integrations/retrievers/breebs)
|
||||||
[See usage example (Retrieval & ConversationalRetrievalChain)](https://python.langchain.com/docs/integrations/retrievers/breebs)
|
|
@ -7,7 +7,7 @@ The integrations outlined in this page can be used with `Cassandra` as well as o
|
|||||||
i.e. those using the `Cassandra Query Language` protocol.
|
i.e. those using the `Cassandra Query Language` protocol.
|
||||||
|
|
||||||
|
|
||||||
### Setup
|
## Installation and Setup
|
||||||
|
|
||||||
Install the following Python package:
|
Install the following Python package:
|
||||||
|
|
||||||
@ -15,15 +15,10 @@ Install the following Python package:
|
|||||||
pip install "cassio>=0.1.4"
|
pip install "cassio>=0.1.4"
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
## Vector Store
|
## Vector Store
|
||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.vectorstores import Cassandra
|
from langchain_community.vectorstores import Cassandra
|
||||||
vector_store = Cassandra(
|
|
||||||
embedding=my_embedding,
|
|
||||||
table_name="my_store",
|
|
||||||
)
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Learn more in the [example notebook](/docs/integrations/vectorstores/cassandra).
|
Learn more in the [example notebook](/docs/integrations/vectorstores/cassandra).
|
||||||
@ -32,7 +27,6 @@ Learn more in the [example notebook](/docs/integrations/vectorstores/cassandra).
|
|||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.chat_message_histories import CassandraChatMessageHistory
|
from langchain_community.chat_message_histories import CassandraChatMessageHistory
|
||||||
message_history = CassandraChatMessageHistory(session_id="my-session")
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Learn more in the [example notebook](/docs/integrations/memory/cassandra_chat_message_history).
|
Learn more in the [example notebook](/docs/integrations/memory/cassandra_chat_message_history).
|
||||||
@ -66,12 +60,11 @@ Learn more in the [example notebook](/docs/integrations/llms/llm_caching#cassand
|
|||||||
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.document_loaders import CassandraLoader
|
from langchain_community.document_loaders import CassandraLoader
|
||||||
loader = CassandraLoader(table="my_table")
|
|
||||||
docs = loader.load()
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Learn more in the [example notebook](/docs/integrations/document_loaders/cassandra).
|
Learn more in the [example notebook](/docs/integrations/document_loaders/cassandra).
|
||||||
|
|
||||||
#### Attribution statement
|
#### Attribution statement
|
||||||
|
|
||||||
> Apache Cassandra, Cassandra and Apache are either registered trademarks or trademarks of the [Apache Software Foundation](http://www.apache.org/) in the United States and/or other countries.
|
> Apache Cassandra, Cassandra and Apache are either registered trademarks or trademarks of
|
||||||
|
> the [Apache Software Foundation](http://www.apache.org/) in the United States and/or other countries.
|
||||||
|
@ -1,17 +1,26 @@
|
|||||||
# CerebriumAI
|
# CerebriumAI
|
||||||
|
|
||||||
This page covers how to use the CerebriumAI ecosystem within LangChain.
|
>[Cerebrium](https://docs.cerebrium.ai/cerebrium/getting-started/introduction) is a serverless GPU infrastructure provider.
|
||||||
It is broken into two parts: installation and setup, and then references to specific CerebriumAI wrappers.
|
> It provides API access to several LLM models.
|
||||||
|
|
||||||
|
See the examples in the [CerebriumAI documentation](https://docs.cerebrium.ai/examples/langchain).
|
||||||
|
|
||||||
## Installation and Setup
|
## Installation and Setup
|
||||||
- Install with `pip install cerebrium`
|
|
||||||
- Get an CerebriumAI api key and set it as an environment variable (`CEREBRIUMAI_API_KEY`)
|
|
||||||
|
|
||||||
## Wrappers
|
- Install a python package:
|
||||||
|
```bash
|
||||||
|
pip install cerebrium
|
||||||
|
```
|
||||||
|
|
||||||
|
- [Get an CerebriumAI api key](https://docs.cerebrium.ai/cerebrium/getting-started/installation) and set
|
||||||
|
it as an environment variable (`CEREBRIUMAI_API_KEY`)
|
||||||
|
|
||||||
|
|
||||||
|
## LLMs
|
||||||
|
|
||||||
|
See a [usage example](/docs/integrations/llms/cerebriumai).
|
||||||
|
|
||||||
### LLM
|
|
||||||
|
|
||||||
There exists an CerebriumAI LLM wrapper, which you can access with
|
|
||||||
```python
|
```python
|
||||||
from langchain_community.llms import CerebriumAI
|
from langchain_community.llms import CerebriumAI
|
||||||
```
|
```
|
Loading…
Reference in New Issue
Block a user