mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Scores are explained in vectorestore docs (#5613)
# Scores in Vectorestores' Docs Are Explained Following vectorestores can return scores with similar documents by using `similarity_search_with_score`: - chroma - docarray_hnsw - docarray_in_memory - faiss - myscale - qdrant - supabase - vectara - weaviate However, in documents, these scores were either not explained at all or explained in a way that could lead to misunderstandings (e.g., FAISS). For instance in FAISS document: if we consider the score returned by the function as a similarity score, we understand that a document returning a higher score is more similar to the source document. However, since the scores returned by the function are distance scores, we should understand that smaller scores correspond to more similar documents. For the libraries other than Vectara, I wrote the scores they use by investigating from the source libraries. Since I couldn't be certain about the score metric used by Vectara, I didn't make any changes in its documentation. The links mentioned in Vectara's documentation became broken due to updates, so I replaced them with working ones. VectorStores / Retrievers / Memory - @dev2049 my twitter: [berkedilekoglu](https://twitter.com/berkedilekoglu) --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
233b52735e
commit
f907b62526
@ -151,6 +151,15 @@
|
|||||||
"## Similarity search with score"
|
"## Similarity search with score"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "346347d7",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"The returned distance score is cosine distance. Therefore, a lower score is better."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 10,
|
"execution_count": 10,
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "2ce41f46-5711-4311-b04d-2fe233ac5b1b",
|
"id": "2ce41f46-5711-4311-b04d-2fe233ac5b1b",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -13,6 +14,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "7ee37d28",
|
"id": "7ee37d28",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -55,6 +57,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "8dbb6de2",
|
"id": "8dbb6de2",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
@ -98,6 +101,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "ed6f905b-4853-4a44-9730-614aa8e22b78",
|
"id": "ed6f905b-4853-4a44-9730-614aa8e22b78",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -145,6 +149,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "3febb987-e903-416f-af26-6897d84c8d61",
|
"id": "3febb987-e903-416f-af26-6897d84c8d61",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -152,6 +157,15 @@
|
|||||||
"### Similarity search with score"
|
"### Similarity search with score"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "bb1df11a",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"The returned distance score is cosine distance. Therefore, a lower score is better."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 7,
|
"execution_count": 7,
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "a3afefb0-7e99-4912-a222-c6b186da11af",
|
"id": "a3afefb0-7e99-4912-a222-c6b186da11af",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -13,6 +14,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "5031a3ec",
|
"id": "5031a3ec",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -54,6 +56,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "6e57a389-f637-4b8f-9ab2-759ae7485f78",
|
"id": "6e57a389-f637-4b8f-9ab2-759ae7485f78",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -95,6 +98,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "efbb6684-3846-4332-a624-ddd4d75844c1",
|
"id": "efbb6684-3846-4332-a624-ddd4d75844c1",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -142,6 +146,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "43896697-f99e-47b6-9117-47a25e9afa9c",
|
"id": "43896697-f99e-47b6-9117-47a25e9afa9c",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -149,6 +154,15 @@
|
|||||||
"### Similarity search with score"
|
"### Similarity search with score"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "414a9bc9",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"The returned distance score is cosine distance. Therefore, a lower score is better."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 7,
|
"execution_count": 7,
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "683953b3",
|
"id": "683953b3",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -29,6 +30,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "38237514-b3fa-44a4-9cff-30cd6bf50073",
|
"id": "38237514-b3fa-44a4-9cff-30cd6bf50073",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -45,7 +47,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdin",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"OpenAI API Key: ········\n"
|
"OpenAI API Key: ········\n"
|
||||||
@ -137,12 +139,13 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "f13473b5",
|
"id": "f13473b5",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Similarity Search with score\n",
|
"## Similarity Search with score\n",
|
||||||
"There are some FAISS specific methods. One of them is `similarity_search_with_score`, which allows you to return not only the documents but also the similarity score of the query to them."
|
"There are some FAISS specific methods. One of them is `similarity_search_with_score`, which allows you to return not only the documents but also the distance score of the query to them. The returned distance score is L2 distance. Therefore, a lower score is better."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -178,6 +181,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "f34420cf",
|
"id": "f34420cf",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -197,6 +201,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "31bda7fd",
|
"id": "31bda7fd",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -257,6 +262,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "57da60d4",
|
"id": "57da60d4",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "683953b3",
|
"id": "683953b3",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -13,6 +14,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "43ead5d5-2c1f-4dce-a69a-cb00e4f9d6f0",
|
"id": "43ead5d5-2c1f-4dce-a69a-cb00e4f9d6f0",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -33,6 +35,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "15a1d477-9cdb-4d82-b019-96951ecb2b72",
|
"id": "15a1d477-9cdb-4d82-b019-96951ecb2b72",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -54,6 +57,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "a9d16fa3",
|
"id": "a9d16fa3",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -169,6 +173,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "e3a8b105",
|
"id": "e3a8b105",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -187,6 +192,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "f59360c0",
|
"id": "f59360c0",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -231,6 +237,24 @@
|
|||||||
"docsearch = MyScale.from_documents(docs, embeddings)"
|
"docsearch = MyScale.from_documents(docs, embeddings)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "8d867b05",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Similarity search with score"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "9ec25cc5",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"The returned distance score is cosine distance. Therefore, a lower score is better."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 16,
|
"execution_count": 16,
|
||||||
@ -257,6 +281,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "a359ed74",
|
"id": "a359ed74",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "683953b3",
|
"id": "683953b3",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -33,6 +34,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "7b2f111b-357a-4f42-9730-ef0603bdc1b5",
|
"id": "7b2f111b-357a-4f42-9730-ef0603bdc1b5",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -49,7 +51,7 @@
|
|||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdin",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"OpenAI API Key: ········\n"
|
"OpenAI API Key: ········\n"
|
||||||
@ -104,6 +106,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "eeead681",
|
"id": "eeead681",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -140,6 +143,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "59f0b954",
|
"id": "59f0b954",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -170,6 +174,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "749658ce",
|
"id": "749658ce",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -200,6 +205,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "c9e21ce9",
|
"id": "c9e21ce9",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -231,6 +237,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "93540013",
|
"id": "93540013",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -279,6 +286,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "1f9215c8",
|
"id": "1f9215c8",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
@ -341,13 +349,15 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "1bda9bf5",
|
"id": "1bda9bf5",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"## Similarity search with score\n",
|
"## Similarity search with score\n",
|
||||||
"\n",
|
"\n",
|
||||||
"Sometimes we might want to perform the search, but also obtain a relevancy score to know how good is a particular result."
|
"Sometimes we might want to perform the search, but also obtain a relevancy score to know how good is a particular result. \n",
|
||||||
|
"The returned distance score is cosine distance. Therefore, a lower score is better."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -400,6 +410,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "525e3582",
|
"id": "525e3582",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -410,6 +421,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "1c2c58dc",
|
"id": "1c2c58dc",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -423,6 +435,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "c58c30bf",
|
"id": "c58c30bf",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
@ -503,6 +516,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "691a82d6",
|
"id": "691a82d6",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -540,6 +554,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "0c851b4f",
|
"id": "0c851b4f",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -602,6 +617,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "0358ecde",
|
"id": "0358ecde",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "683953b3",
|
"id": "683953b3",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -9,6 +10,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "cc80fa84-1f2f-48b4-bd39-3e6412f012f1",
|
"id": "cc80fa84-1f2f-48b4-bd39-3e6412f012f1",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -85,6 +87,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "69bff365-3039-4ff8-a641-aa190166179d",
|
"id": "69bff365-3039-4ff8-a641-aa190166179d",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -236,6 +239,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "18152965",
|
"id": "18152965",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -243,6 +247,15 @@
|
|||||||
"## Similarity search with score\n"
|
"## Similarity search with score\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "ea13e80a",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"The returned distance score is cosine distance. Therefore, a lower score is better."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 9,
|
"execution_count": 9,
|
||||||
@ -276,6 +289,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "794a7552",
|
"id": "794a7552",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
@ -1,21 +1,23 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "683953b3",
|
"id": "683953b3",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"source": [
|
"source": [
|
||||||
"# Vectara\n",
|
"# Vectara\n",
|
||||||
"\n",
|
"\n",
|
||||||
">[Vectara](https://Vectara.com/docs/) is a API platform for building LLM-powered applications. It provides a simple to use API for document indexing and query that is managed by Vectara and is optimized for performance and accuracy. \n",
|
">[Vectara](https://vectara.com/) is a API platform for building LLM-powered applications. It provides a simple to use API for document indexing and query that is managed by Vectara and is optimized for performance and accuracy. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"\n",
|
"\n",
|
||||||
"This notebook shows how to use functionality related to the `Vectara` vector database. \n",
|
"This notebook shows how to use functionality related to the `Vectara` vector database. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"See the [Vectara API documentation ](https://Vectara.com/docs/) for more information on how to use the API."
|
"See the [Vectara API documentation ](https://docs.vectara.com/docs/) for more information on how to use the API."
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "7b2f111b-357a-4f42-9730-ef0603bdc1b5",
|
"id": "7b2f111b-357a-4f42-9730-ef0603bdc1b5",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -87,6 +89,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "eeead681",
|
"id": "eeead681",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -113,6 +116,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "1f9215c8",
|
"id": "1f9215c8",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
@ -169,6 +173,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "1bda9bf5",
|
"id": "1bda9bf5",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -222,6 +227,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "691a82d6",
|
"id": "691a82d6",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "683953b3",
|
"id": "683953b3",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -47,6 +48,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "6b34828d-e627-4d85-aabd-eeb15d9f4b00",
|
"id": "6b34828d-e627-4d85-aabd-eeb15d9f4b00",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -165,6 +167,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "a15863ee",
|
"id": "a15863ee",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
@ -172,6 +175,16 @@
|
|||||||
"## Similarity search with score"
|
"## Similarity search with score"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "64e03db8",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Sometimes we might want to perform the search, but also obtain a relevancy score to know how good is a particular result. \n",
|
||||||
|
"The returned distance score is cosine distance. Therefore, a lower score is better."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 10,
|
"execution_count": 10,
|
||||||
@ -214,6 +227,7 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
"attachments": {},
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"id": "05fd146c",
|
"id": "05fd146c",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
|
@ -217,8 +217,9 @@ class Chroma(VectorStore):
|
|||||||
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List[Tuple[Document, float]]: List of documents most similar to the query
|
List[Tuple[Document, float]]: List of documents most similar to
|
||||||
text with distance in float.
|
the query text and cosine distance in float for each.
|
||||||
|
Lower score represents more similarity.
|
||||||
"""
|
"""
|
||||||
if self._embedding_function is None:
|
if self._embedding_function is None:
|
||||||
results = self.__query_collection(
|
results = self.__query_collection(
|
||||||
|
@ -96,7 +96,9 @@ class DocArrayIndex(VectorStore, ABC):
|
|||||||
k: Number of Documents to return. Defaults to 4.
|
k: Number of Documents to return. Defaults to 4.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of Documents most similar to the query and score for each.
|
List of documents most similar to the query text and
|
||||||
|
cosine distance in float for each.
|
||||||
|
Lower score represents more similarity.
|
||||||
"""
|
"""
|
||||||
query_embedding = self.embedding.embed_query(query)
|
query_embedding = self.embedding.embed_query(query)
|
||||||
query_doc = self.doc_cls(embedding=query_embedding) # type: ignore
|
query_doc = self.doc_cls(embedding=query_embedding) # type: ignore
|
||||||
|
@ -189,7 +189,8 @@ class FAISS(VectorStore):
|
|||||||
k: Number of Documents to return. Defaults to 4.
|
k: Number of Documents to return. Defaults to 4.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of Documents most similar to the query and score for each
|
List of documents most similar to the query text and L2 distance
|
||||||
|
in float for each. Lower score represents more similarity.
|
||||||
"""
|
"""
|
||||||
faiss = dependable_faiss_import()
|
faiss = dependable_faiss_import()
|
||||||
vector = np.array([embedding], dtype=np.float32)
|
vector = np.array([embedding], dtype=np.float32)
|
||||||
@ -218,7 +219,8 @@ class FAISS(VectorStore):
|
|||||||
k: Number of Documents to return. Defaults to 4.
|
k: Number of Documents to return. Defaults to 4.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of Documents most similar to the query and score for each
|
List of documents most similar to the query text with
|
||||||
|
L2 distance in float. Lower score represents more similarity.
|
||||||
"""
|
"""
|
||||||
embedding = self.embedding_function(query)
|
embedding = self.embedding_function(query)
|
||||||
docs = self.similarity_search_with_score_by_vector(embedding, k)
|
docs = self.similarity_search_with_score_by_vector(embedding, k)
|
||||||
|
@ -404,7 +404,9 @@ class MyScale(VectorStore):
|
|||||||
alone. The default name for it is `metadata`.
|
alone. The default name for it is `metadata`.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List[Document]: List of documents
|
List[Document]: List of documents most similar to the query text
|
||||||
|
and cosine distance in float for each.
|
||||||
|
Lower score represents more similarity.
|
||||||
"""
|
"""
|
||||||
q_str = self._build_qstr(self.embedding_function(query), k, where_str)
|
q_str = self._build_qstr(self.embedding_function(query), k, where_str)
|
||||||
try:
|
try:
|
||||||
|
@ -192,7 +192,9 @@ class Qdrant(VectorStore):
|
|||||||
filter: Filter by metadata. Defaults to None.
|
filter: Filter by metadata. Defaults to None.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
List of Documents most similar to the query and score for each.
|
List of documents most similar to the query text and cosine
|
||||||
|
distance in float for each.
|
||||||
|
Lower score represents more similarity.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if filter is not None and isinstance(filter, dict):
|
if filter is not None and isinstance(filter, dict):
|
||||||
|
@ -314,6 +314,11 @@ class Weaviate(VectorStore):
|
|||||||
def similarity_search_with_score(
|
def similarity_search_with_score(
|
||||||
self, query: str, k: int = 4, **kwargs: Any
|
self, query: str, k: int = 4, **kwargs: Any
|
||||||
) -> List[Tuple[Document, float]]:
|
) -> List[Tuple[Document, float]]:
|
||||||
|
"""
|
||||||
|
Return list of documents most similar to the query
|
||||||
|
text and cosine distance in float for each.
|
||||||
|
Lower score represents more similarity.
|
||||||
|
"""
|
||||||
if self._embedding is None:
|
if self._embedding is None:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
"_embedding cannot be None for similarity_search_with_score"
|
"_embedding cannot be None for similarity_search_with_score"
|
||||||
|
Loading…
Reference in New Issue
Block a user