ollama[patch]: Update API Reference for ollama embeddings (#25315)

Update API reference for OllamaEmbeddings
Issue: https://github.com/langchain-ai/langchain/issues/24856
This commit is contained in:
Eugene Yurtsev 2024-08-12 21:31:48 -04:00 committed by GitHub
parent 2907ab2297
commit f679ed72ca
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -9,16 +9,111 @@ from ollama import AsyncClient, Client
class OllamaEmbeddings(BaseModel, Embeddings):
"""OllamaEmbeddings embedding model.
"""Ollama embedding model integration.
Example:
Set up a local Ollama instance:
Install the Ollama package and set up a local Ollama instance
using the instructions here: https://github.com/ollama/ollama .
You will need to choose a model to serve.
You can view a list of available models via the model library (https://ollama.com/library).
To fetch a model from the Ollama model library use ``ollama pull <name-of-model>``.
For example, to pull the llama3 model:
.. code-block:: bash
ollama pull llama3
This will download the default tagged version of the model.
Typically, the default points to the latest, smallest sized-parameter model.
* On Mac, the models will be downloaded to ~/.ollama/models
* On Linux (or WSL), the models will be stored at /usr/share/ollama/.ollama/models
You can specify the exact version of the model of interest
as such ``ollama pull vicuna:13b-v1.5-16k-q4_0``.
To view pulled models:
.. code-block:: bash
ollama list
To start serving:
.. code-block:: bash
ollama serve
View the Ollama documentation for more commands.
.. code-block:: bash
ollama help
Install the langchain-ollama integration package:
.. code-block:: bash
pip install -U langchain_ollama
Key init args completion params:
model: str
Name of Ollama model to use.
base_url: Optional[str]
Base url the model is hosted under.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_ollama import OllamaEmbeddings
embedder = OllamaEmbeddings(model="llama3")
embedder.embed_query("what is the place that jonathan worked at?")
"""
embed = OllamaEmbeddings(
model="llama3"
)
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
vector = embed.embed_query(input_text)
print(vector[:3])
.. code-block:: python
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Embed multiple texts:
.. code-block:: python
input_texts = ["Document 1...", "Document 2..."]
vectors = embed.embed_documents(input_texts)
print(len(vectors))
# The first 3 coordinates for the first vector
print(vectors[0][:3])
.. code-block:: python
2
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Async:
.. code-block:: python
vector = await embed.aembed_query(input_text)
print(vector[:3])
# multiple:
# await embed.aembed_documents(input_texts)
.. code-block:: python
[-0.009100092574954033, 0.005071679595857859, -0.0029193938244134188]
""" # noqa: E501
model: str
"""Model name to use."""