🐛 Docs Fixes [2 one-liners, examples broken] (#8519)

## Description: 
   
1)Map reduce example in docs is missing an important import statement.
Figured other people would benefit from being able to copy 🍝 the code.

2)RefineDocumentsChain example also broken.

## Issue: 

None

## Dependencies:

None. One liner.

## Tag maintainer:

@baskaryan

## Twitter handle: 

I mean, it's a one line fix lol. But @will_thompson_k is my twitter
handle.
This commit is contained in:
Will Thompson 2023-08-02 14:39:41 -06:00 committed by GitHub
parent 1335f2b9f8
commit ee1d13678e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 3 additions and 2 deletions

View File

@ -184,6 +184,7 @@ You can also use prompt with multi input. In this example, we will use a MapRedu
```python
from langchain.chains.combine_documents.map_reduce import MapReduceDocumentsChain
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains import ReduceDocumentsChain
map_template_string = """Give the following python code information, generate a description that explains what the code does and also mention the time complexity.
Code:

View File

@ -53,7 +53,7 @@ class RefineDocumentsChain(BaseCombineDocumentsChain):
prompt = PromptTemplate.from_template(
"Summarize this content: {context}"
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
initial_llm_chain = LLMChain(llm=llm, prompt=prompt)
initial_response_name = "prev_response"
# The prompt here should take as an input variable the
# `document_variable_name` as well as `initial_response_name`
@ -61,7 +61,7 @@ class RefineDocumentsChain(BaseCombineDocumentsChain):
"Here's your first summary: {prev_response}. "
"Now add to it based on the following context: {context}"
)
llm_chain_refine = LLMChain(llm=llm, prompt=prompt_refine)
refine_llm_chain = LLMChain(llm=llm, prompt=prompt_refine)
chain = RefineDocumentsChain(
initial_llm_chain=initial_llm_chain,
refine_llm_chain=refine_llm_chain,