mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
docs: Updated integration docs structure for llm/google_vertex_ai_palm (#16091)
- **Description**: Updated doc for llm/google_vertex_ai_palm with new functions: `invoke`, `stream`... Changed structure of the document to match the required one. - **Issue**: #15664 - **Dependencies**: None - **Twitter handle**: None --------- Co-authored-by: Jorge Zaldívar <jzaldivar@google.com>
This commit is contained in:
parent
aa2e642ce3
commit
ed118950fe
@ -11,29 +11,30 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "xazoWTniN8Xa"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Google Cloud Vertex AI\n",
|
||||
"\n",
|
||||
"**Note:** This is separate from the `Google Generative AI` integration, it exposes [Vertex AI Generative API](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview) on `Google Cloud`.\n"
|
||||
"**Note:** This is separate from the `Google Generative AI` integration, it exposes [Vertex AI Generative API](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/overview) on `Google Cloud`.\n",
|
||||
"\n",
|
||||
"VertexAI exposes all foundational models available in google cloud:\n",
|
||||
"- Gemini (`gemini-pro` and `gemini-pro-vision`)\n",
|
||||
"- Palm 2 for Text (`text-bison`)\n",
|
||||
"- Codey for Code Generation (`code-bison`)\n",
|
||||
"\n",
|
||||
"For a full and updated list of available models visit [VertexAI documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/overview)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "Q_UoF2FKN8Xb"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setting up"
|
||||
"## Setup"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "8uImJzc4N8Xb"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"By default, Google Cloud [does not use](https://cloud.google.com/vertex-ai/docs/generative-ai/data-governance#foundation_model_development) customer data to train its foundation models as part of Google Cloud's AI/ML Privacy Commitment. More details about how Google processes data can also be found in [Google's Customer Data Processing Addendum (CDPA)](https://cloud.google.com/terms/data-processing-addendum).\n",
|
||||
"\n",
|
||||
@ -52,78 +53,29 @@
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.2.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.3.2\u001b[0m\n",
|
||||
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n",
|
||||
"Note: you may need to restart the kernel to use updated packages.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"%pip install --upgrade --quiet langchain-core langchain-google-vertexai"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" **Pros of Python:**\n",
|
||||
"\n",
|
||||
"* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners. It also has a large and supportive community, with many resources available online.\n",
|
||||
"* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and artificial intelligence.\n",
|
||||
"* **Powerful:** Python has a rich library of built-in functions and modules, making it easy to perform complex tasks without having to write a lot of code.\n",
|
||||
"* **Cross-platform:** Python can be run on a variety of operating systems\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import VertexAI\n",
|
||||
"\n",
|
||||
"llm = VertexAI()\n",
|
||||
"print(llm(\"What are some of the pros and cons of Python as a programming language?\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "38S1FS3qN8Xc"
|
||||
},
|
||||
"source": [
|
||||
"You can also use Gemini model (in preview) with VertexAI:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"**Pros of Python:**\n",
|
||||
"\n",
|
||||
"* **Easy to learn and use:** Python is known for its simplicity and readability, making it a great choice for beginners and experienced programmers alike. Its syntax is straightforward and intuitive, allowing developers to quickly pick up the language and start writing code.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"* **Versatile:** Python is a general-purpose language that can be used for a wide range of applications, including web development, data science, machine learning, and scripting. Its extensive standard library and vast ecosystem of third-party modules make it suitable for a variety of tasks.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"* **Cross-platform:** Python is compatible with multiple operating systems, including\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"llm = VertexAI(model_name=\"gemini-pro\")\n",
|
||||
"print(llm(\"What are some of the pros and cons of Python as a programming language?\"))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "_-9MhhN8N8Xc"
|
||||
},
|
||||
"source": [
|
||||
"## Using in a chain"
|
||||
"## Usage\n",
|
||||
"\n",
|
||||
"VertexAI supports all [LLM](/docs/modules/model_io/llms/) functionality."
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -131,204 +83,199 @@
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_google_vertexai import VertexAI"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = VertexAI(model_name=\"gemini-pro\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'**Pros:**\\n\\n* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\\n* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\\n* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\\n* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\\n* **Cross-platform:** Python is available for a'"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"message = \"What are some of the pros and cons of Python as a programming language?\"\n",
|
||||
"model.invoke(message)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'**Pros:**\\n\\n* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\\n* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\\n* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\\n* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\\n* **Cross-platform:** Python is available for a'"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"await model.ainvoke(message)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"**Pros:**\n",
|
||||
"\n",
|
||||
"* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\n",
|
||||
"* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\n",
|
||||
"* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\n",
|
||||
"* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\n",
|
||||
"* **Cross-platform:** Python is available for a"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for chunk in model.stream(message):\n",
|
||||
" print(chunk, end=\"\", flush=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"['**Pros:**\\n\\n* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\\n* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\\n* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\\n* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\\n* **Cross-platform:** Python is available for a']"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"model.batch([message])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We can use the `generate` method to get back extra metadata like [safety attributes](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_attribute_confidence_scoring) and not just text completions."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[[GenerationChunk(text='**Pros:**\\n\\n* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\\n* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\\n* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\\n* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\\n* **Cross-platform:** Python is available for a')]]"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"result = model.generate([message])\n",
|
||||
"result.generations"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[[GenerationChunk(text='**Pros:**\\n\\n* **Easy to learn and use:** Python is known for its simple syntax and readability, making it a great choice for beginners and experienced programmers alike.\\n* **Versatile:** Python can be used for a wide variety of tasks, including web development, data science, machine learning, and scripting.\\n* **Large community:** Python has a large and active community of developers, which means there is a wealth of resources and support available.\\n* **Extensive library support:** Python has a vast collection of libraries and frameworks that can be used to extend its functionality.\\n* **Cross-platform:** Python is available for a')]]"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"result = await model.agenerate([message])\n",
|
||||
"result.generations"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also easily combine with a prompt template for easy structuring of user input. We can do this using [LCEL](/docs/expression_language)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1. You start with 5 apples.\n",
|
||||
"2. You throw away 2 apples, so you have 5 - 2 = 3 apples left.\n",
|
||||
"3. You eat 1 apple, so you have 3 - 1 = 2 apples left.\n",
|
||||
"\n",
|
||||
"Therefore, you have 2 apples left.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain_core.prompts import PromptTemplate\n",
|
||||
"\n",
|
||||
"template = \"\"\"Question: {question}\n",
|
||||
"\n",
|
||||
"Answer: Let's think step by step.\"\"\"\n",
|
||||
"prompt = PromptTemplate.from_template(template)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chain = prompt | llm"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" Justin Bieber was born on March 1, 1994. Bill Clinton was the president of the United States from January 20, 1993, to January 20, 2001.\n",
|
||||
"The final answer is Bill Clinton\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"question = \"Who was the president in the year Justin Beiber was born?\"\n",
|
||||
"prompt = PromptTemplate.from_template(template)\n",
|
||||
"\n",
|
||||
"chain = prompt | model\n",
|
||||
"\n",
|
||||
"question = \"\"\"\n",
|
||||
"I have five apples. I throw two away. I eat one. How many apples do I have left?\n",
|
||||
"\"\"\"\n",
|
||||
"print(chain.invoke({\"question\": question}))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "AV7oXXuHN8Xd"
|
||||
},
|
||||
"source": [
|
||||
"## Code generation example"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "3ZzVtF6tN8Xd"
|
||||
},
|
||||
"source": [
|
||||
"You can now leverage the `Codey API` for code generation within `Vertex AI`.\n",
|
||||
"\n",
|
||||
"The model names are:\n",
|
||||
"- `code-bison`: for code suggestion\n",
|
||||
"- `code-gecko`: for code completion"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = VertexAI(model_name=\"code-bison\", max_output_tokens=1000, temperature=0.3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"question = \"Write a python function that checks if a string is a valid email address\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"```python\n",
|
||||
"import re\n",
|
||||
"\n",
|
||||
"def is_valid_email(email):\n",
|
||||
" pattern = re.compile(r\"[^@]+@[^@]+\\.[^@]+\")\n",
|
||||
" return pattern.match(email)\n",
|
||||
"```\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(llm(question))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "0WqyaSC2N8Xd"
|
||||
},
|
||||
"source": [
|
||||
"## Full generation info\n",
|
||||
"\n",
|
||||
"We can use the `generate` method to get back extra metadata like [safety attributes](https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_attribute_confidence_scoring) and not just text completions"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[[GenerationChunk(text='```python\\nimport re\\n\\ndef is_valid_email(email):\\n pattern = re.compile(r\"[^@]+@[^@]+\\\\.[^@]+\")\\n return pattern.match(email)\\n```', generation_info={'is_blocked': False, 'safety_attributes': {'Health': 0.1}})]]"
|
||||
]
|
||||
},
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"result = llm.generate([question])\n",
|
||||
"result.generations"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "Wd5M4BBUN8Xd"
|
||||
},
|
||||
"source": [
|
||||
"## Asynchronous calls\n",
|
||||
"\n",
|
||||
"With `agenerate` we can make asynchronous calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# If running in a Jupyter notebook you'll need to install nest_asyncio\n",
|
||||
"\n",
|
||||
"%pip install --upgrade --quiet nest_asyncio\n",
|
||||
"\n",
|
||||
"import nest_asyncio\n",
|
||||
"\n",
|
||||
"nest_asyncio.apply()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"LLMResult(generations=[[GenerationChunk(text='```python\\nimport re\\n\\ndef is_valid_email(email):\\n pattern = re.compile(r\"[^@]+@[^@]+\\\\.[^@]+\")\\n return pattern.match(email)\\n```', generation_info={'is_blocked': False, 'safety_attributes': {'Health': 0.1}})]], llm_output=None, run=[RunInfo(run_id=UUID('caf74e91-aefb-48ac-8031-0c505fcbbcc6'))])"
|
||||
]
|
||||
},
|
||||
"execution_count": 25,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import asyncio\n",
|
||||
"\n",
|
||||
"asyncio.run(llm.agenerate([question]))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "VLsy_4bZN8Xd"
|
||||
},
|
||||
"source": [
|
||||
"## Streaming calls\n",
|
||||
"\n",
|
||||
"With `stream` we can stream results from the model"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import sys"
|
||||
"You can use different foundational models for specialized in different tasks. \n",
|
||||
"For an updated list of available models visit [VertexAI documentation](https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/overview)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -354,49 +301,38 @@
|
||||
" True if the string is a valid email address, False otherwise.\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" # Check for a valid email address format.\n",
|
||||
" if not re.match(r\"^[A-Za-z0-9\\.\\+_-]+@[A-Za-z0-9\\._-]+\\.[a-zA-Z]*$\", email):\n",
|
||||
" return False\n",
|
||||
" # Compile the regular expression for an email address.\n",
|
||||
" regex = re.compile(r\"[^@]+@[^@]+\\.[^@]+\")\n",
|
||||
"\n",
|
||||
" # Check if the domain name exists.\n",
|
||||
" try:\n",
|
||||
" domain = email.split(\"@\")[1]\n",
|
||||
" socket.gethostbyname(domain)\n",
|
||||
" except socket.gaierror:\n",
|
||||
" return False\n",
|
||||
"\n",
|
||||
" return True\n",
|
||||
"```"
|
||||
" # Check if the string matches the regular expression.\n",
|
||||
" return regex.match(email) is not None\n",
|
||||
"```\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for chunk in llm.stream(question):\n",
|
||||
" sys.stdout.write(chunk)\n",
|
||||
" sys.stdout.flush()"
|
||||
"llm = VertexAI(model_name=\"code-bison\", max_output_tokens=1000, temperature=0.3)\n",
|
||||
"question = \"Write a python function that checks if a string is a valid email address\"\n",
|
||||
"print(model.invoke(question))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "4VJ8GwhaN8Xd"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Multimodality"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "L7BovARaN8Xe"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"With Gemini, you can use LLM in a multimodal mode:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@ -429,16 +365,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "3Vk3gQrrOaL9"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's double-check it's a cat :)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@ -448,7 +382,7 @@
|
||||
"<vertexai.generative_models._generative_models.Image at 0x791ded5f1ed0>"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@ -462,16 +396,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "1uEACSSm8AL2"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also pass images as bytes:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
@ -506,18 +438,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "AuhF5WQuN8Xe"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Please, note that you can also use the image stored in GCS (just point the `url` to the full GCS path, starting with `gs://` instead of a local one)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "qaC2UmxS9WtB"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"And you can also pass a history of a previous chat to the LLM:"
|
||||
]
|
||||
@ -564,18 +492,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "VEYAfdBpN8Xe"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Vertex Model Garden"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "N3ptjr_LN8Xe"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Vertex Model Garden [exposes](https://cloud.google.com/vertex-ai/docs/start/explore-models) open-sourced models that can be deployed and served on Vertex AI. If you have successfully deployed a model from Vertex Model Garden, you can find a corresponding Vertex AI [endpoint](https://cloud.google.com/vertex-ai/docs/general/deployment#what_happens_when_you_deploy_a_model) in the console or via API."
|
||||
]
|
||||
@ -604,14 +528,12 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(llm(\"What is the meaning of life?\"))"
|
||||
"llm.invoke(\"What is the meaning of life?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"id": "TDXoFZ6YN8Xe"
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Like all LLMs, we can then compose it with other components:"
|
||||
]
|
||||
@ -643,8 +565,16 @@
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"version": "3.11.4"
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
Loading…
Reference in New Issue
Block a user