mirror of
https://github.com/hwchase17/langchain
synced 2024-11-20 03:25:56 +00:00
parent
0551594722
commit
dd95f0892d
@ -32,7 +32,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 1,
|
||||||
"id": "cb4a5787",
|
"id": "cb4a5787",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -46,7 +46,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 2,
|
||||||
"id": "bcbe04d9",
|
"id": "bcbe04d9",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
@ -83,7 +83,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 3,
|
||||||
"id": "86e34dbf",
|
"id": "86e34dbf",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
@ -138,7 +138,7 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"query='dinosaur' filter=None\n"
|
"query='dinosaur' filter=None limit=None\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -170,7 +170,7 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)\n"
|
"query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) limit=None\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -200,7 +200,7 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig')\n"
|
"query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -229,7 +229,7 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)])\n"
|
"query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction')]) limit=None\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -258,7 +258,7 @@
|
|||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
"output_type": "stream",
|
"output_type": "stream",
|
||||||
"text": [
|
"text": [
|
||||||
"query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')])\n"
|
"query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')]) limit=None\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -277,10 +277,69 @@
|
|||||||
"retriever.get_relevant_documents(\"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated\")"
|
"retriever.get_relevant_documents(\"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "87513116",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Filter k\n",
|
||||||
|
"\n",
|
||||||
|
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
|
||||||
|
"\n",
|
||||||
|
"We can do this by passing `enable_limit=True` to the constructor."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 4,
|
||||||
|
"id": "73cfca56",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||||
|
" llm, \n",
|
||||||
|
" vectorstore, \n",
|
||||||
|
" document_content_description, \n",
|
||||||
|
" metadata_field_info, \n",
|
||||||
|
" enable_limit=True,\n",
|
||||||
|
" verbose=True\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 6,
|
||||||
|
"id": "60110338",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query='dinosaur' filter=None limit=2\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),\n",
|
||||||
|
" Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 6,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a relevant query\n",
|
||||||
|
"retriever.get_relevant_documents(\"what are two movies about dinosaurs\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "60110338",
|
"id": "f15d84b3",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": []
|
"source": []
|
||||||
|
@ -295,13 +295,45 @@
|
|||||||
"retriever.get_relevant_documents(\"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated\")"
|
"retriever.get_relevant_documents(\"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated\")"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "6fe7536c",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Filter k\n",
|
||||||
|
"\n",
|
||||||
|
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
|
||||||
|
"\n",
|
||||||
|
"We can do this by passing `enable_limit=True` to the constructor."
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "69bbd809",
|
"id": "3a2937c2",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": []
|
"source": [
|
||||||
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||||
|
" llm, \n",
|
||||||
|
" vectorstore, \n",
|
||||||
|
" document_content_description, \n",
|
||||||
|
" metadata_field_info, \n",
|
||||||
|
" enable_limit=True,\n",
|
||||||
|
" verbose=True\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "83d233aa",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a relevant query\n",
|
||||||
|
"retriever.get_relevant_documents(\"What are two movies about dinosaurs\")"
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
@ -18,6 +18,8 @@ from langchain.chains.query_constructor.prompt import (
|
|||||||
DEFAULT_SCHEMA,
|
DEFAULT_SCHEMA,
|
||||||
DEFAULT_SUFFIX,
|
DEFAULT_SUFFIX,
|
||||||
EXAMPLE_PROMPT,
|
EXAMPLE_PROMPT,
|
||||||
|
EXAMPLES_WITH_LIMIT,
|
||||||
|
SCHEMA_WITH_LIMIT,
|
||||||
)
|
)
|
||||||
from langchain.chains.query_constructor.schema import AttributeInfo
|
from langchain.chains.query_constructor.schema import AttributeInfo
|
||||||
from langchain.output_parsers.structured import parse_json_markdown
|
from langchain.output_parsers.structured import parse_json_markdown
|
||||||
@ -38,7 +40,11 @@ class StructuredQueryOutputParser(BaseOutputParser[StructuredQuery]):
|
|||||||
parsed["filter"] = None
|
parsed["filter"] = None
|
||||||
else:
|
else:
|
||||||
parsed["filter"] = self.ast_parse(parsed["filter"])
|
parsed["filter"] = self.ast_parse(parsed["filter"])
|
||||||
return StructuredQuery(query=parsed["query"], filter=parsed["filter"])
|
return StructuredQuery(
|
||||||
|
query=parsed["query"],
|
||||||
|
filter=parsed["filter"],
|
||||||
|
limit=parsed.get("limit"),
|
||||||
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise OutputParserException(
|
raise OutputParserException(
|
||||||
f"Parsing text\n{text}\n raised following error:\n{e}"
|
f"Parsing text\n{text}\n raised following error:\n{e}"
|
||||||
@ -70,15 +76,25 @@ def _get_prompt(
|
|||||||
examples: Optional[List] = None,
|
examples: Optional[List] = None,
|
||||||
allowed_comparators: Optional[Sequence[Comparator]] = None,
|
allowed_comparators: Optional[Sequence[Comparator]] = None,
|
||||||
allowed_operators: Optional[Sequence[Operator]] = None,
|
allowed_operators: Optional[Sequence[Operator]] = None,
|
||||||
|
enable_limit: bool = False,
|
||||||
) -> BasePromptTemplate:
|
) -> BasePromptTemplate:
|
||||||
attribute_str = _format_attribute_info(attribute_info)
|
attribute_str = _format_attribute_info(attribute_info)
|
||||||
examples = examples or DEFAULT_EXAMPLES
|
|
||||||
allowed_comparators = allowed_comparators or list(Comparator)
|
allowed_comparators = allowed_comparators or list(Comparator)
|
||||||
allowed_operators = allowed_operators or list(Operator)
|
allowed_operators = allowed_operators or list(Operator)
|
||||||
|
if enable_limit:
|
||||||
|
schema = SCHEMA_WITH_LIMIT.format(
|
||||||
|
allowed_comparators=" | ".join(allowed_comparators),
|
||||||
|
allowed_operators=" | ".join(allowed_operators),
|
||||||
|
)
|
||||||
|
|
||||||
|
examples = examples or EXAMPLES_WITH_LIMIT
|
||||||
|
else:
|
||||||
schema = DEFAULT_SCHEMA.format(
|
schema = DEFAULT_SCHEMA.format(
|
||||||
allowed_comparators=" | ".join(allowed_comparators),
|
allowed_comparators=" | ".join(allowed_comparators),
|
||||||
allowed_operators=" | ".join(allowed_operators),
|
allowed_operators=" | ".join(allowed_operators),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
examples = examples or DEFAULT_EXAMPLES
|
||||||
prefix = DEFAULT_PREFIX.format(schema=schema)
|
prefix = DEFAULT_PREFIX.format(schema=schema)
|
||||||
suffix = DEFAULT_SUFFIX.format(
|
suffix = DEFAULT_SUFFIX.format(
|
||||||
i=len(examples) + 1, content=document_contents, attributes=attribute_str
|
i=len(examples) + 1, content=document_contents, attributes=attribute_str
|
||||||
@ -87,7 +103,7 @@ def _get_prompt(
|
|||||||
allowed_comparators=allowed_comparators, allowed_operators=allowed_operators
|
allowed_comparators=allowed_comparators, allowed_operators=allowed_operators
|
||||||
)
|
)
|
||||||
return FewShotPromptTemplate(
|
return FewShotPromptTemplate(
|
||||||
examples=DEFAULT_EXAMPLES,
|
examples=examples,
|
||||||
example_prompt=EXAMPLE_PROMPT,
|
example_prompt=EXAMPLE_PROMPT,
|
||||||
input_variables=["query"],
|
input_variables=["query"],
|
||||||
suffix=suffix,
|
suffix=suffix,
|
||||||
@ -103,6 +119,7 @@ def load_query_constructor_chain(
|
|||||||
examples: Optional[List] = None,
|
examples: Optional[List] = None,
|
||||||
allowed_comparators: Optional[Sequence[Comparator]] = None,
|
allowed_comparators: Optional[Sequence[Comparator]] = None,
|
||||||
allowed_operators: Optional[Sequence[Operator]] = None,
|
allowed_operators: Optional[Sequence[Operator]] = None,
|
||||||
|
enable_limit: bool = False,
|
||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> LLMChain:
|
) -> LLMChain:
|
||||||
prompt = _get_prompt(
|
prompt = _get_prompt(
|
||||||
@ -111,5 +128,6 @@ def load_query_constructor_chain(
|
|||||||
examples=examples,
|
examples=examples,
|
||||||
allowed_comparators=allowed_comparators,
|
allowed_comparators=allowed_comparators,
|
||||||
allowed_operators=allowed_operators,
|
allowed_operators=allowed_operators,
|
||||||
|
enable_limit=enable_limit,
|
||||||
)
|
)
|
||||||
return LLMChain(llm=llm, prompt=prompt, **kwargs)
|
return LLMChain(llm=llm, prompt=prompt, **kwargs)
|
||||||
|
@ -81,3 +81,4 @@ class Operation(FilterDirective):
|
|||||||
class StructuredQuery(Expr):
|
class StructuredQuery(Expr):
|
||||||
query: str
|
query: str
|
||||||
filter: Optional[FilterDirective]
|
filter: Optional[FilterDirective]
|
||||||
|
limit: Optional[int]
|
||||||
|
@ -46,6 +46,16 @@ NO_FILTER_ANSWER = """\
|
|||||||
```\
|
```\
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
WITH_LIMIT_ANSWER = """\
|
||||||
|
```json
|
||||||
|
{{
|
||||||
|
"query": "love",
|
||||||
|
"filter": "NO_FILTER",
|
||||||
|
"limit": 2
|
||||||
|
}}
|
||||||
|
```\
|
||||||
|
"""
|
||||||
|
|
||||||
DEFAULT_EXAMPLES = [
|
DEFAULT_EXAMPLES = [
|
||||||
{
|
{
|
||||||
"i": 1,
|
"i": 1,
|
||||||
@ -61,6 +71,27 @@ DEFAULT_EXAMPLES = [
|
|||||||
},
|
},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
EXAMPLES_WITH_LIMIT = [
|
||||||
|
{
|
||||||
|
"i": 1,
|
||||||
|
"data_source": SONG_DATA_SOURCE,
|
||||||
|
"user_query": "What are songs by Taylor Swift or Katy Perry about teenage romance under 3 minutes long in the dance pop genre",
|
||||||
|
"structured_request": FULL_ANSWER,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"i": 2,
|
||||||
|
"data_source": SONG_DATA_SOURCE,
|
||||||
|
"user_query": "What are songs that were not published on Spotify",
|
||||||
|
"structured_request": NO_FILTER_ANSWER,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"i": 3,
|
||||||
|
"data_source": SONG_DATA_SOURCE,
|
||||||
|
"user_query": "What are three songs about love",
|
||||||
|
"structured_request": WITH_LIMIT_ANSWER,
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
EXAMPLE_PROMPT_TEMPLATE = """\
|
EXAMPLE_PROMPT_TEMPLATE = """\
|
||||||
<< Example {i}. >>
|
<< Example {i}. >>
|
||||||
Data Source:
|
Data Source:
|
||||||
@ -116,6 +147,45 @@ Make sure that filters are only used as needed. If there are no filters that sho
|
|||||||
applied return "NO_FILTER" for the filter value.\
|
applied return "NO_FILTER" for the filter value.\
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
SCHEMA_WITH_LIMIT = """\
|
||||||
|
<< Structured Request Schema >>
|
||||||
|
When responding use a markdown code snippet with a JSON object formatted in the \
|
||||||
|
following schema:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{{{{
|
||||||
|
"query": string \\ text string to compare to document contents
|
||||||
|
"filter": string \\ logical condition statement for filtering documents
|
||||||
|
"limit": int \\ the number of documents to retrieve
|
||||||
|
}}}}
|
||||||
|
```
|
||||||
|
|
||||||
|
The query string should contain only text that is expected to match the contents of \
|
||||||
|
documents. Any conditions in the filter should not be mentioned in the query as well.
|
||||||
|
|
||||||
|
A logical condition statement is composed of one or more comparison and logical \
|
||||||
|
operation statements.
|
||||||
|
|
||||||
|
A comparison statement takes the form: `comp(attr, val)`:
|
||||||
|
- `comp` ({allowed_comparators}): comparator
|
||||||
|
- `attr` (string): name of attribute to apply the comparison to
|
||||||
|
- `val` (string): is the comparison value
|
||||||
|
|
||||||
|
A logical operation statement takes the form `op(statement1, statement2, ...)`:
|
||||||
|
- `op` ({allowed_operators}): logical operator
|
||||||
|
- `statement1`, `statement2`, ... (comparison statements or logical operation \
|
||||||
|
statements): one or more statements to apply the operation to
|
||||||
|
|
||||||
|
Make sure that you only use the comparators and logical operators listed above and \
|
||||||
|
no others.
|
||||||
|
Make sure that filters only refer to attributes that exist in the data source.
|
||||||
|
Make sure that filters take into account the descriptions of attributes and only make \
|
||||||
|
comparisons that are feasible given the type of data being stored.
|
||||||
|
Make sure that filters are only used as needed. If there are no filters that should be \
|
||||||
|
applied return "NO_FILTER" for the filter value.
|
||||||
|
Make sure the `limit` is always an int value. It is an optional parameter so leave it blank if it is does not make sense.
|
||||||
|
"""
|
||||||
|
|
||||||
DEFAULT_PREFIX = """\
|
DEFAULT_PREFIX = """\
|
||||||
Your goal is to structure the user's query to match the request schema provided below.
|
Your goal is to structure the user's query to match the request schema provided below.
|
||||||
|
|
||||||
|
@ -68,7 +68,7 @@ class SelfQueryRetriever(BaseRetriever, BaseModel):
|
|||||||
Returns:
|
Returns:
|
||||||
List of relevant documents
|
List of relevant documents
|
||||||
"""
|
"""
|
||||||
inputs = self.llm_chain.prep_inputs(query)
|
inputs = self.llm_chain.prep_inputs({"query": query})
|
||||||
structured_query = cast(
|
structured_query = cast(
|
||||||
StructuredQuery, self.llm_chain.predict_and_parse(callbacks=None, **inputs)
|
StructuredQuery, self.llm_chain.predict_and_parse(callbacks=None, **inputs)
|
||||||
)
|
)
|
||||||
@ -77,6 +77,9 @@ class SelfQueryRetriever(BaseRetriever, BaseModel):
|
|||||||
new_query, new_kwargs = self.structured_query_translator.visit_structured_query(
|
new_query, new_kwargs = self.structured_query_translator.visit_structured_query(
|
||||||
structured_query
|
structured_query
|
||||||
)
|
)
|
||||||
|
if structured_query.limit is not None:
|
||||||
|
new_kwargs["k"] = structured_query.limit
|
||||||
|
|
||||||
search_kwargs = {**self.search_kwargs, **new_kwargs}
|
search_kwargs = {**self.search_kwargs, **new_kwargs}
|
||||||
docs = self.vectorstore.search(query, self.search_type, **search_kwargs)
|
docs = self.vectorstore.search(query, self.search_type, **search_kwargs)
|
||||||
return docs
|
return docs
|
||||||
@ -93,11 +96,13 @@ class SelfQueryRetriever(BaseRetriever, BaseModel):
|
|||||||
metadata_field_info: List[AttributeInfo],
|
metadata_field_info: List[AttributeInfo],
|
||||||
structured_query_translator: Optional[Visitor] = None,
|
structured_query_translator: Optional[Visitor] = None,
|
||||||
chain_kwargs: Optional[Dict] = None,
|
chain_kwargs: Optional[Dict] = None,
|
||||||
|
enable_limit: bool = False,
|
||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
) -> "SelfQueryRetriever":
|
) -> "SelfQueryRetriever":
|
||||||
if structured_query_translator is None:
|
if structured_query_translator is None:
|
||||||
structured_query_translator = _get_builtin_translator(vectorstore.__class__)
|
structured_query_translator = _get_builtin_translator(vectorstore.__class__)
|
||||||
chain_kwargs = chain_kwargs or {}
|
chain_kwargs = chain_kwargs or {}
|
||||||
|
|
||||||
if "allowed_comparators" not in chain_kwargs:
|
if "allowed_comparators" not in chain_kwargs:
|
||||||
chain_kwargs[
|
chain_kwargs[
|
||||||
"allowed_comparators"
|
"allowed_comparators"
|
||||||
@ -107,7 +112,11 @@ class SelfQueryRetriever(BaseRetriever, BaseModel):
|
|||||||
"allowed_operators"
|
"allowed_operators"
|
||||||
] = structured_query_translator.allowed_operators
|
] = structured_query_translator.allowed_operators
|
||||||
llm_chain = load_query_constructor_chain(
|
llm_chain = load_query_constructor_chain(
|
||||||
llm, document_contents, metadata_field_info, **chain_kwargs
|
llm,
|
||||||
|
document_contents,
|
||||||
|
metadata_field_info,
|
||||||
|
enable_limit=enable_limit,
|
||||||
|
**chain_kwargs,
|
||||||
)
|
)
|
||||||
return cls(
|
return cls(
|
||||||
llm_chain=llm_chain,
|
llm_chain=llm_chain,
|
||||||
|
Loading…
Reference in New Issue
Block a user