mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
Add example on how to use Featureform with langchain (#4337)
Added an example on how to use Featureform to connecting_to_a_feature_store.ipynb .
This commit is contained in:
parent
42df78d396
commit
d84df25466
@ -448,6 +448,152 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": []
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "a0691cd9",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Featureform\n",
|
||||||
|
"\n",
|
||||||
|
"Finally, we will use [Featureform](https://github.com/featureform/featureform) an open-source and enterprise-grade feature store to run the same example. Featureform allows you to work with your infrastructure like Spark or locally to define your feature transformations."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "44320d68",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Initialize Featureform\n",
|
||||||
|
"\n",
|
||||||
|
"You can follow in the instructions in the README to initialize your transformations and features in Featureform."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "e64ada9d",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import featureform as ff\n",
|
||||||
|
"\n",
|
||||||
|
"client = ff.Client(host=\"demo.featureform.com\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "b28914a2",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Prompts\n",
|
||||||
|
"\n",
|
||||||
|
"Here we will set up a custom FeatureformPromptTemplate. This prompt template will take in the average amount a user pays per transactions.\n",
|
||||||
|
"\n",
|
||||||
|
"Note that the input to this prompt template is just avg_transaction, since that is the only user defined piece (all other variables are looked up inside the prompt template)."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "75d4a34a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.prompts import PromptTemplate, StringPromptTemplate"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "88253bcb",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"template = \"\"\"Given the amount a user spends on average per transaction, let them know if they are a high roller. Otherwise, make a silly joke about chickens at the end to make them feel better\n",
|
||||||
|
"\n",
|
||||||
|
"Here are the user's stats:\n",
|
||||||
|
"Average Amount per Transaction: ${avg_transcation}\n",
|
||||||
|
"\n",
|
||||||
|
"Your response:\"\"\"\n",
|
||||||
|
"prompt = PromptTemplate.from_template(template)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "61f72476",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"class FeatureformPromptTemplate(StringPromptTemplate):\n",
|
||||||
|
" \n",
|
||||||
|
" def format(self, **kwargs) -> str:\n",
|
||||||
|
" user_id = kwargs.pop(\"user_id\")\n",
|
||||||
|
" fpf = client.features([(\"avg_transactions\", \"quickstart\")], {\"user\": user_id})\n",
|
||||||
|
" return prompt.format(**kwargs)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "994a644c",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"prompt_template = FeatureformPrompTemplate(input_variables=[\"user_id\"])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "79b2b0cb",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"print(prompt_template.format(user_id=\"C1410926\"))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "f09ddfdd",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Use in a chain\n",
|
||||||
|
"\n",
|
||||||
|
"We can now use this in a chain, successfully creating a chain that achieves personalization backed by the Featureform Feature Platform"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "5e89216f",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.chat_models import ChatOpenAI\n",
|
||||||
|
"from langchain.chains import LLMChain"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "9d3d558c",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"chain = LLMChain(llm=ChatOpenAI(), prompt=prompt_template)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "b5412626",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"chain.run(\"C1410926\")"
|
||||||
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
Loading…
Reference in New Issue
Block a user