mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
Bagatur/revert revert nuclia (#8833)
This commit is contained in:
parent
2f309a4ce6
commit
d7b613a293
144
docs/extras/integrations/document_loaders/nuclia.ipynb
Normal file
144
docs/extras/integrations/document_loaders/nuclia.ipynb
Normal file
@ -0,0 +1,144 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Nuclia Understanding API document loader\n",
|
||||
"\n",
|
||||
"[Nuclia](https://nuclia.com) automatically indexes your unstructured data from any internal and external source, providing optimized search results and generative answers. It can handle video and audio transcription, image content extraction, and document parsing.\n",
|
||||
"\n",
|
||||
"The Nuclia Understanding API supports the processing of unstructured data, including text, web pages, documents, and audio/video contents. It extracts all texts wherever they are (using speech-to-text or OCR when needed), it also extracts metadata, embedded files (like images in a PDF), and web links. If machine learning is enabled, it identifies entities, provides a summary of the content and generates embeddings for all the sentences.\n",
|
||||
"\n",
|
||||
"To use the Nuclia Understanding API, you need to have a Nuclia account. You can create one for free at [https://nuclia.cloud](https://nuclia.cloud), and then [create a NUA key](https://docs.nuclia.dev/docs/docs/using/understanding/intro)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!pip install --upgrade protobuf\n",
|
||||
"#!pip install nucliadb-protos"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"NUCLIA_ZONE\"] = \"<YOUR_ZONE>\" # e.g. europe-1\n",
|
||||
"os.environ[\"NUCLIA_NUA_KEY\"] = \"<YOUR_API_KEY>\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To use the Nuclia document loader, you need to instantiate a `NucliaUnderstandingAPI` tool:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.tools.nuclia import NucliaUnderstandingAPI\n",
|
||||
"\n",
|
||||
"nua = NucliaUnderstandingAPI(enable_ml=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.document_loaders.nuclia import NucliaLoader\n",
|
||||
"\n",
|
||||
"loader = NucliaLoader(\"./interview.mp4\", nua)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can now call the `load` the document in a loop until you get the document."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import time\n",
|
||||
"\n",
|
||||
"pending = True\n",
|
||||
"while pending:\n",
|
||||
" time.sleep(15)\n",
|
||||
" docs = loader.load()\n",
|
||||
" if len(docs) > 0:\n",
|
||||
" print(docs[0].page_content)\n",
|
||||
" print(docs[0].metadata)\n",
|
||||
" pending = False\n",
|
||||
" else:\n",
|
||||
" print(\"waiting...\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Retrieved information\n",
|
||||
"\n",
|
||||
"Nuclia returns the following information:\n",
|
||||
"\n",
|
||||
"- file metadata\n",
|
||||
"- extracted text\n",
|
||||
"- nested text (like text in an embedded image)\n",
|
||||
"- paragraphs and sentences splitting (defined by the position of their first and last characters, plus start time and end time for a video or audio file)\n",
|
||||
"- links\n",
|
||||
"- a thumbnail\n",
|
||||
"- embedded files\n",
|
||||
"\n",
|
||||
"Note:\n",
|
||||
"\n",
|
||||
" Generated files (thumbnail, extracted embedded files, etc.) are provided as a token. You can download them with the [`/processing/download` endpoint](https://docs.nuclia.dev/docs/api#operation/Download_binary_file_processing_download_get).\n",
|
||||
"\n",
|
||||
" Also at any level, if an attribute exceeds a certain size, it will be put in a downloadable file and will be replaced in the document by a file pointer. This will consist of `{\"file\": {\"uri\": \"JWT_TOKEN\"}}`. The rule is that if the size of the message is greater than 1000000 characters, the biggest parts will be moved to downloadable files. First, the compression process will target vectors. If that is not enough, it will target large field metadata, and finally it will target extracted text.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "langchain",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.5"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
@ -0,0 +1,103 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Nuclia Understanding API document transformer\n",
|
||||
"\n",
|
||||
"[Nuclia](https://nuclia.com) automatically indexes your unstructured data from any internal and external source, providing optimized search results and generative answers. It can handle video and audio transcription, image content extraction, and document parsing.\n",
|
||||
"\n",
|
||||
"The Nuclia Understanding API document transformer splits text into paragraphs and sentences, identifies entities, provides a summary of the text and generates embeddings for all the sentences.\n",
|
||||
"\n",
|
||||
"To use the Nuclia Understanding API, you need to have a Nuclia account. You can create one for free at [https://nuclia.cloud](https://nuclia.cloud), and then [create a NUA key](https://docs.nuclia.dev/docs/docs/using/understanding/intro).\n",
|
||||
"\n",
|
||||
"from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformer"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!pip install --upgrade protobuf\n",
|
||||
"#!pip install nucliadb-protos"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"NUCLIA_ZONE\"] = \"<YOUR_ZONE>\" # e.g. europe-1\n",
|
||||
"os.environ[\"NUCLIA_NUA_KEY\"] = \"<YOUR_API_KEY>\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"To use the Nuclia document transformer, you need to instantiate a `NucliaUnderstandingAPI` tool with `enable_ml` set to `True`:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.tools.nuclia import NucliaUnderstandingAPI\n",
|
||||
"\n",
|
||||
"nua = NucliaUnderstandingAPI(enable_ml=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The Nuclia document transformer must be called in async mode, so you need to use the `atransform_documents` method:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import asyncio\n",
|
||||
"\n",
|
||||
"from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformer\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async def process():\n",
|
||||
" documents = [\n",
|
||||
" Document(page_content=\"<TEXT 1>\", metadata={}),\n",
|
||||
" Document(page_content=\"<TEXT 2>\", metadata={}),\n",
|
||||
" Document(page_content=\"<TEXT 3>\", metadata={}),\n",
|
||||
" ]\n",
|
||||
" nuclia_transformer = NucliaTextTransformer(nua)\n",
|
||||
" transformed_documents = await nuclia_transformer.atransform_documents(documents)\n",
|
||||
" print(transformed_documents)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"asyncio.run(process())"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"language_info": {
|
||||
"name": "python"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
173
docs/extras/integrations/tools/nuclia.ipynb
Normal file
173
docs/extras/integrations/tools/nuclia.ipynb
Normal file
@ -0,0 +1,173 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Nuclia Understanding API tool\n",
|
||||
"\n",
|
||||
"[Nuclia](https://nuclia.com) automatically indexes your unstructured data from any internal and external source, providing optimized search results and generative answers. It can handle video and audio transcription, image content extraction, and document parsing.\n",
|
||||
"\n",
|
||||
"The Nuclia Understanding API supports the processing of unstructured data, including text, web pages, documents, and audio/video contents. It extracts all texts wherever it is (using speech-to-text or OCR when needed), it identifies entities, it aslo extracts metadata, embedded files (like images in a PDF), and web links. It also provides a summary of the content.\n",
|
||||
"\n",
|
||||
"To use the Nuclia Understanding API, you need to have a Nuclia account. You can create one for free at [https://nuclia.cloud](https://nuclia.cloud), and then [create a NUA key](https://docs.nuclia.dev/docs/docs/using/understanding/intro)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#!pip install --upgrade protobuf\n",
|
||||
"#!pip install nucliadb-protos"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"NUCLIA_ZONE\"] = \"<YOUR_ZONE>\" # e.g. europe-1\n",
|
||||
"os.environ[\"NUCLIA_NUA_KEY\"] = \"<YOUR_API_KEY>\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.tools.nuclia import NucliaUnderstandingAPI\n",
|
||||
"\n",
|
||||
"nua = NucliaUnderstandingAPI(enable_ml=False)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can push files to the Nuclia Understanding API using the `push` action. As the processing is done asynchronously, the results might be returned in a different order than the files were pushed. That is why you need to provide an `id` to match the results with the corresponding file."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"nua.run({\"action\": \"push\", \"id\": \"1\", \"path\": \"./report.docx\"})\n",
|
||||
"nua.run({\"action\": \"push\", \"id\": \"2\", \"path\": \"./interview.mp4\"})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can now call the `pull` action in a loop until you get the JSON-formatted result."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import time\n",
|
||||
"\n",
|
||||
"pending = True\n",
|
||||
"data = None\n",
|
||||
"while pending:\n",
|
||||
" time.sleep(15)\n",
|
||||
" data = nua.run({\"action\": \"pull\", \"id\": \"1\", \"path\": None})\n",
|
||||
" if data:\n",
|
||||
" print(data)\n",
|
||||
" pending = False\n",
|
||||
" else:\n",
|
||||
" print(\"waiting...\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"You can also do it in one step in `async` mode, you only need to do a push, and it will wait until the results are pulled:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import asyncio\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async def process():\n",
|
||||
" data = await nua.arun(\n",
|
||||
" {\"action\": \"push\", \"id\": \"1\", \"path\": \"./talk.mp4\", \"text\": None}\n",
|
||||
" )\n",
|
||||
" print(data)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"asyncio.run(process())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Retrieved information\n",
|
||||
"\n",
|
||||
"Nuclia returns the following information:\n",
|
||||
"\n",
|
||||
"- file metadata\n",
|
||||
"- extracted text\n",
|
||||
"- nested text (like text in an embedded image)\n",
|
||||
"- a summary (only when `enable_ml` is set to `True`)\n",
|
||||
"- paragraphs and sentences splitting (defined by the position of their first and last characters, plus start time and end time for a video or audio file)\n",
|
||||
"- named entities: people, dates, places, organizations, etc. (only when `enable_ml` is set to `True`)\n",
|
||||
"- links\n",
|
||||
"- a thumbnail\n",
|
||||
"- embedded files\n",
|
||||
"- the vector representations of the text (only when `enable_ml` is set to `True`)\n",
|
||||
"\n",
|
||||
"Note:\n",
|
||||
"\n",
|
||||
" Generated files (thumbnail, extracted embedded files, etc.) are provided as a token. You can download them with the [`/processing/download` endpoint](https://docs.nuclia.dev/docs/api#operation/Download_binary_file_processing_download_get).\n",
|
||||
"\n",
|
||||
" Also at any level, if an attribute exceeds a certain size, it will be put in a downloadable file and will be replaced in the document by a file pointer. This will consist of `{\"file\": {\"uri\": \"JWT_TOKEN\"}}`. The rule is that if the size of the message is greater than 1000000 characters, the biggest parts will be moved to downloadable files. First, the compression process will target vectors. If that is not enough, it will target large field metadata, and finally it will target extracted text.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "langchain",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.5"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
33
libs/langchain/langchain/document_loaders/nuclia.py
Normal file
33
libs/langchain/langchain/document_loaders/nuclia.py
Normal file
@ -0,0 +1,33 @@
|
||||
"""Extract text from any file type."""
|
||||
import json
|
||||
import uuid
|
||||
from typing import List
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.document_loaders.base import BaseLoader
|
||||
from langchain.tools.nuclia.tool import NucliaUnderstandingAPI
|
||||
|
||||
|
||||
class NucliaLoader(BaseLoader):
|
||||
"""Extract text from any file type."""
|
||||
|
||||
def __init__(self, path: str, nuclia_tool: NucliaUnderstandingAPI):
|
||||
self.nua = nuclia_tool
|
||||
self.id = str(uuid.uuid4())
|
||||
self.nua.run({"action": "push", "id": self.id, "path": path, "text": None})
|
||||
|
||||
def load(self) -> List[Document]:
|
||||
"""Load documents."""
|
||||
data = self.nua.run(
|
||||
{"action": "pull", "id": self.id, "path": None, "text": None}
|
||||
)
|
||||
if not data:
|
||||
return []
|
||||
obj = json.loads(data)
|
||||
text = obj["extracted_text"][0]["body"]["text"]
|
||||
print(text)
|
||||
metadata = {
|
||||
"file": obj["file_extracted_data"][0],
|
||||
"metadata": obj["field_metadata"][0],
|
||||
}
|
||||
return [Document(page_content=text, metadata=metadata)]
|
@ -27,6 +27,7 @@ from langchain.document_transformers.embeddings_redundant_filter import (
|
||||
)
|
||||
from langchain.document_transformers.html2text import Html2TextTransformer
|
||||
from langchain.document_transformers.long_context_reorder import LongContextReorder
|
||||
from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformer
|
||||
from langchain.document_transformers.openai_functions import OpenAIMetadataTagger
|
||||
|
||||
__all__ = [
|
||||
@ -37,6 +38,7 @@ __all__ = [
|
||||
"EmbeddingsRedundantFilter",
|
||||
"get_stateful_documents",
|
||||
"LongContextReorder",
|
||||
"NucliaTextTransformer",
|
||||
"OpenAIMetadataTagger",
|
||||
"Html2TextTransformer",
|
||||
]
|
||||
|
@ -0,0 +1,47 @@
|
||||
import asyncio
|
||||
import json
|
||||
import uuid
|
||||
from typing import Any, Sequence
|
||||
|
||||
from langchain.schema.document import BaseDocumentTransformer, Document
|
||||
from langchain.tools.nuclia.tool import NucliaUnderstandingAPI
|
||||
|
||||
|
||||
class NucliaTextTransformer(BaseDocumentTransformer):
|
||||
"""
|
||||
The Nuclia Understanding API splits into paragraphs and sentences,
|
||||
identifies entities, provides a summary of the text and generates
|
||||
embeddings for all the sentences.
|
||||
"""
|
||||
|
||||
def __init__(self, nua: NucliaUnderstandingAPI):
|
||||
self.nua = nua
|
||||
|
||||
def transform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
raise NotImplementedError
|
||||
|
||||
async def atransform_documents(
|
||||
self, documents: Sequence[Document], **kwargs: Any
|
||||
) -> Sequence[Document]:
|
||||
tasks = [
|
||||
self.nua.arun(
|
||||
{
|
||||
"action": "push",
|
||||
"id": str(uuid.uuid4()),
|
||||
"text": doc.page_content,
|
||||
"path": None,
|
||||
}
|
||||
)
|
||||
for doc in documents
|
||||
]
|
||||
results = await asyncio.gather(*tasks)
|
||||
for doc, result in zip(documents, results):
|
||||
obj = json.loads(result)
|
||||
metadata = {
|
||||
"file": obj["file_extracted_data"][0],
|
||||
"metadata": obj["field_metadata"][0],
|
||||
}
|
||||
doc.metadata["nuclia"] = metadata
|
||||
return documents
|
3
libs/langchain/langchain/tools/nuclia/__init__.py
Normal file
3
libs/langchain/langchain/tools/nuclia/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from langchain.tools.nuclia.tool import NucliaUnderstandingAPI
|
||||
|
||||
__all__ = ["NucliaUnderstandingAPI"]
|
229
libs/langchain/langchain/tools/nuclia/tool.py
Normal file
229
libs/langchain/langchain/tools/nuclia/tool.py
Normal file
@ -0,0 +1,229 @@
|
||||
"""Tool for the Nuclia Understanding API.
|
||||
|
||||
Installation:
|
||||
|
||||
```bash
|
||||
pip install --upgrade protobuf
|
||||
pip install nucliadb-protos
|
||||
```
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import base64
|
||||
import logging
|
||||
import mimetypes
|
||||
import os
|
||||
from typing import Any, Dict, Optional, Type, Union
|
||||
|
||||
import requests
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForToolRun,
|
||||
CallbackManagerForToolRun,
|
||||
)
|
||||
from langchain.tools.base import BaseTool
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class NUASchema(BaseModel):
|
||||
action: str = Field(
|
||||
...,
|
||||
description="Action to perform. Either `push` or `pull`.",
|
||||
)
|
||||
id: str = Field(
|
||||
...,
|
||||
description="ID of the file to push or pull.",
|
||||
)
|
||||
path: Optional[str] = Field(
|
||||
...,
|
||||
description="Path to the file to push (needed only for `push` action).",
|
||||
)
|
||||
text: Optional[str] = Field(
|
||||
...,
|
||||
description="Text content to process (needed only for `push` action).",
|
||||
)
|
||||
|
||||
|
||||
class NucliaUnderstandingAPI(BaseTool):
|
||||
"""Tool to process files with the Nuclia Understanding API."""
|
||||
|
||||
name = "nuclia_understanding_api"
|
||||
description = (
|
||||
"A wrapper around Nuclia Understanding API endpoints. "
|
||||
"Useful for when you need to extract text from any kind of files. "
|
||||
)
|
||||
args_schema: Type[BaseModel] = NUASchema
|
||||
_results: Dict[str, Any] = {}
|
||||
_config: Dict[str, Any] = {}
|
||||
|
||||
def __init__(self, enable_ml: bool = False) -> None:
|
||||
zone = os.environ.get("NUCLIA_ZONE", "europe-1")
|
||||
self._config["BACKEND"] = f"https://{zone}.nuclia.cloud/api/v1"
|
||||
key = os.environ.get("NUCLIA_NUA_KEY")
|
||||
if not key:
|
||||
raise ValueError("NUCLIA_NUA_KEY environment variable not set")
|
||||
else:
|
||||
self._config["NUA_KEY"] = key
|
||||
self._config["enable_ml"] = enable_ml
|
||||
super().__init__()
|
||||
|
||||
def _run(
|
||||
self,
|
||||
action: str,
|
||||
id: str,
|
||||
path: Optional[str],
|
||||
text: Optional[str],
|
||||
run_manager: Optional[CallbackManagerForToolRun] = None,
|
||||
) -> str:
|
||||
"""Use the tool."""
|
||||
if action == "push":
|
||||
self._check_params(path, text)
|
||||
if path:
|
||||
return self._pushFile(id, path)
|
||||
if text:
|
||||
return self._pushText(id, text)
|
||||
elif action == "pull":
|
||||
return self._pull(id)
|
||||
return ""
|
||||
|
||||
async def _arun(
|
||||
self,
|
||||
action: str,
|
||||
id: str,
|
||||
path: Optional[str] = None,
|
||||
text: Optional[str] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
|
||||
) -> str:
|
||||
"""Use the tool asynchronously."""
|
||||
self._check_params(path, text)
|
||||
if path:
|
||||
self._pushFile(id, path)
|
||||
if text:
|
||||
self._pushText(id, text)
|
||||
data = None
|
||||
while True:
|
||||
data = self._pull(id)
|
||||
if data:
|
||||
break
|
||||
await asyncio.sleep(15)
|
||||
return data
|
||||
|
||||
def _pushText(self, id: str, text: str) -> str:
|
||||
field = {
|
||||
"textfield": {"text": {"body": text, "format": 0}},
|
||||
"processing_options": {"ml_text": self._config["enable_ml"]},
|
||||
}
|
||||
return self._pushField(id, field)
|
||||
|
||||
def _pushFile(self, id: str, content_path: str) -> str:
|
||||
with open(content_path, "rb") as source_file:
|
||||
response = requests.post(
|
||||
self._config["BACKEND"] + "/processing/upload",
|
||||
headers={
|
||||
"content-type": mimetypes.guess_type(content_path)[0]
|
||||
or "application/octet-stream",
|
||||
"x-stf-nuakey": "Bearer " + self._config["NUA_KEY"],
|
||||
},
|
||||
data=source_file.read(),
|
||||
)
|
||||
if response.status_code != 200:
|
||||
logger.info(
|
||||
f"Error uploading {content_path}: "
|
||||
f"{response.status_code} {response.text}"
|
||||
)
|
||||
return ""
|
||||
else:
|
||||
field = {
|
||||
"filefield": {"file": f"{response.text}"},
|
||||
"processing_options": {"ml_text": self._config["enable_ml"]},
|
||||
}
|
||||
return self._pushField(id, field)
|
||||
|
||||
def _pushField(self, id: str, field: Any) -> str:
|
||||
logger.info(f"Pushing {id} in queue")
|
||||
response = requests.post(
|
||||
self._config["BACKEND"] + "/processing/push",
|
||||
headers={
|
||||
"content-type": "application/json",
|
||||
"x-stf-nuakey": "Bearer " + self._config["NUA_KEY"],
|
||||
},
|
||||
json=field,
|
||||
)
|
||||
if response.status_code != 200:
|
||||
logger.info(
|
||||
f"Error pushing field {id}:" f"{response.status_code} {response.text}"
|
||||
)
|
||||
raise ValueError("Error pushing field")
|
||||
else:
|
||||
uuid = response.json()["uuid"]
|
||||
logger.info(f"Field {id} pushed in queue, uuid: {uuid}")
|
||||
self._results[id] = {"uuid": uuid, "status": "pending"}
|
||||
return uuid
|
||||
|
||||
def _pull(self, id: str) -> str:
|
||||
self._pull_queue()
|
||||
result = self._results.get(id, None)
|
||||
if not result:
|
||||
logger.info(f"{id} not in queue")
|
||||
return ""
|
||||
elif result["status"] == "pending":
|
||||
logger.info(f'Waiting for {result["uuid"]} to be processed')
|
||||
return ""
|
||||
else:
|
||||
return result["data"]
|
||||
|
||||
def _pull_queue(self) -> None:
|
||||
try:
|
||||
from nucliadb_protos.writer_pb2 import BrokerMessage
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"nucliadb-protos is not installed. "
|
||||
"Run `pip install nucliadb-protos` to install."
|
||||
) from e
|
||||
try:
|
||||
from google.protobuf.json_format import MessageToJson
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Unable to import google.protobuf, please install with "
|
||||
"`pip install protobuf`."
|
||||
) from e
|
||||
|
||||
res = requests.get(
|
||||
self._config["BACKEND"] + "/processing/pull",
|
||||
headers={
|
||||
"x-stf-nuakey": "Bearer " + self._config["NUA_KEY"],
|
||||
},
|
||||
).json()
|
||||
if res["status"] == "empty":
|
||||
logger.info("Queue empty")
|
||||
elif res["status"] == "ok":
|
||||
payload = res["payload"]
|
||||
pb = BrokerMessage()
|
||||
pb.ParseFromString(base64.b64decode(payload))
|
||||
uuid = pb.uuid
|
||||
logger.info(f"Pulled {uuid} from queue")
|
||||
matching_id = self._find_matching_id(uuid)
|
||||
if not matching_id:
|
||||
logger.info(f"No matching id for {uuid}")
|
||||
else:
|
||||
self._results[matching_id]["status"] = "done"
|
||||
data = MessageToJson(
|
||||
pb,
|
||||
preserving_proto_field_name=True,
|
||||
including_default_value_fields=True,
|
||||
)
|
||||
self._results[matching_id]["data"] = data
|
||||
|
||||
def _find_matching_id(self, uuid: str) -> Union[str, None]:
|
||||
for id, result in self._results.items():
|
||||
if result["uuid"] == uuid:
|
||||
return id
|
||||
return None
|
||||
|
||||
def _check_params(self, path: Optional[str], text: Optional[str]) -> None:
|
||||
if not path and not text:
|
||||
raise ValueError("File path or text is required")
|
||||
if path and text:
|
||||
raise ValueError("Cannot process both file and text on a single run")
|
@ -0,0 +1,45 @@
|
||||
import json
|
||||
import os
|
||||
from typing import Any
|
||||
from unittest import mock
|
||||
|
||||
from langchain.document_loaders.nuclia import NucliaLoader
|
||||
from langchain.tools.nuclia.tool import NucliaUnderstandingAPI
|
||||
|
||||
|
||||
def fakerun(**args: Any) -> Any:
|
||||
def run(self: Any, **args: Any) -> str:
|
||||
data = {
|
||||
"extracted_text": [{"body": {"text": "Hello World"}}],
|
||||
"file_extracted_data": [{"language": "en"}],
|
||||
"field_metadata": [
|
||||
{
|
||||
"metadata": {
|
||||
"metadata": {
|
||||
"paragraphs": [
|
||||
{"end": 66, "sentences": [{"start": 1, "end": 67}]}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
}
|
||||
return json.dumps(data)
|
||||
|
||||
return run
|
||||
|
||||
|
||||
@mock.patch.dict(os.environ, {"NUCLIA_NUA_KEY": "_a_key_"})
|
||||
def test_nuclia_loader() -> None:
|
||||
with mock.patch(
|
||||
"langchain.tools.nuclia.tool.NucliaUnderstandingAPI._run", new_callable=fakerun
|
||||
):
|
||||
nua = NucliaUnderstandingAPI(enable_ml=False)
|
||||
loader = NucliaLoader("/whatever/file.mp3", nua)
|
||||
docs = loader.load()
|
||||
assert len(docs) == 1
|
||||
assert docs[0].page_content == "Hello World"
|
||||
assert docs[0].metadata["file"]["language"] == "en"
|
||||
assert (
|
||||
len(docs[0].metadata["metadata"]["metadata"]["metadata"]["paragraphs"]) == 1
|
||||
)
|
@ -0,0 +1,62 @@
|
||||
import asyncio
|
||||
import json
|
||||
from typing import Any
|
||||
from unittest import mock
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformer
|
||||
from langchain.schema.document import Document
|
||||
from langchain.tools.nuclia.tool import NucliaUnderstandingAPI
|
||||
|
||||
|
||||
def fakerun(**args: Any) -> Any:
|
||||
async def run(self: Any, **args: Any) -> str:
|
||||
await asyncio.sleep(0.1)
|
||||
data = {
|
||||
"extracted_text": [{"body": {"text": "Hello World"}}],
|
||||
"file_extracted_data": [{"language": "en"}],
|
||||
"field_metadata": [
|
||||
{
|
||||
"metadata": {
|
||||
"metadata": {
|
||||
"paragraphs": [
|
||||
{"end": 66, "sentences": [{"start": 1, "end": 67}]}
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
}
|
||||
return json.dumps(data)
|
||||
|
||||
return run
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_nuclia_loader() -> None:
|
||||
with mock.patch(
|
||||
"langchain.tools.nuclia.tool.NucliaUnderstandingAPI._arun", new_callable=fakerun
|
||||
):
|
||||
with mock.patch("os.environ.get", return_value="_a_key_"):
|
||||
nua = NucliaUnderstandingAPI(enable_ml=False)
|
||||
documents = [
|
||||
Document(page_content="Hello, my name is Alice", metadata={}),
|
||||
Document(page_content="Hello, my name is Bob", metadata={}),
|
||||
]
|
||||
nuclia_transformer = NucliaTextTransformer(nua)
|
||||
transformed_documents = await nuclia_transformer.atransform_documents(
|
||||
documents
|
||||
)
|
||||
assert len(transformed_documents) == 2
|
||||
assert (
|
||||
transformed_documents[0].metadata["nuclia"]["file"]["language"] == "en"
|
||||
)
|
||||
assert (
|
||||
len(
|
||||
transformed_documents[1].metadata["nuclia"]["metadata"]["metadata"][
|
||||
"metadata"
|
||||
]["paragraphs"]
|
||||
)
|
||||
== 1
|
||||
)
|
@ -0,0 +1,110 @@
|
||||
import base64
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from unittest import mock
|
||||
|
||||
import pytest
|
||||
|
||||
from langchain.tools.nuclia.tool import NucliaUnderstandingAPI
|
||||
|
||||
README_PATH = Path(__file__).parents[4] / "README.md"
|
||||
|
||||
|
||||
class FakeUploadResponse:
|
||||
status_code = 200
|
||||
text = "fake_uuid"
|
||||
|
||||
|
||||
class FakePushResponse:
|
||||
status_code = 200
|
||||
|
||||
def json(self) -> Any:
|
||||
return {"uuid": "fake_uuid"}
|
||||
|
||||
|
||||
class FakePullResponse:
|
||||
status_code = 200
|
||||
|
||||
def json(self) -> Any:
|
||||
return {
|
||||
"status": "ok",
|
||||
"payload": base64.b64encode(bytes('{"some": "data"}}', "utf-8")),
|
||||
}
|
||||
|
||||
|
||||
def FakeParseFromString(**args: Any) -> Any:
|
||||
def ParseFromString(self: Any, data: str) -> None:
|
||||
self.uuid = "fake_uuid"
|
||||
|
||||
return ParseFromString
|
||||
|
||||
|
||||
def fakepost(**kwargs: Any) -> Any:
|
||||
def fn(url: str, **kwargs: Any) -> Any:
|
||||
if url.endswith("/processing/upload"):
|
||||
return FakeUploadResponse()
|
||||
elif url.endswith("/processing/push"):
|
||||
return FakePushResponse()
|
||||
else:
|
||||
raise Exception("Invalid POST URL")
|
||||
|
||||
return fn
|
||||
|
||||
|
||||
def fakeget(**kwargs: Any) -> Any:
|
||||
def fn(url: str, **kwargs: Any) -> Any:
|
||||
if url.endswith("/processing/pull"):
|
||||
return FakePullResponse()
|
||||
else:
|
||||
raise Exception("Invalid GET URL")
|
||||
|
||||
return fn
|
||||
|
||||
|
||||
@mock.patch.dict(os.environ, {"NUCLIA_NUA_KEY": "_a_key_"})
|
||||
@pytest.mark.requires("nucliadb_protos")
|
||||
def test_nuclia_tool() -> None:
|
||||
with mock.patch(
|
||||
"nucliadb_protos.writer_pb2.BrokerMessage.ParseFromString",
|
||||
new_callable=FakeParseFromString,
|
||||
):
|
||||
with mock.patch("requests.post", new_callable=fakepost):
|
||||
with mock.patch("requests.get", new_callable=fakeget):
|
||||
nua = NucliaUnderstandingAPI(enable_ml=False)
|
||||
uuid = nua.run(
|
||||
{
|
||||
"action": "push",
|
||||
"id": "1",
|
||||
"path": str(README_PATH),
|
||||
"text": None,
|
||||
}
|
||||
)
|
||||
assert uuid == "fake_uuid"
|
||||
data = nua.run(
|
||||
{"action": "pull", "id": "1", "path": None, "text": None}
|
||||
)
|
||||
assert json.loads(data)["uuid"] == "fake_uuid"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.requires("nucliadb_protos")
|
||||
async def test_async_call() -> None:
|
||||
with mock.patch(
|
||||
"nucliadb_protos.writer_pb2.BrokerMessage.ParseFromString",
|
||||
new_callable=FakeParseFromString,
|
||||
):
|
||||
with mock.patch("requests.post", new_callable=fakepost):
|
||||
with mock.patch("requests.get", new_callable=fakeget):
|
||||
with mock.patch("os.environ.get", return_value="_a_key_"):
|
||||
nua = NucliaUnderstandingAPI(enable_ml=False)
|
||||
data = await nua.arun(
|
||||
{
|
||||
"action": "push",
|
||||
"id": "1",
|
||||
"path": str(README_PATH),
|
||||
"text": None,
|
||||
}
|
||||
)
|
||||
assert json.loads(data)["uuid"] == "fake_uuid"
|
Loading…
Reference in New Issue
Block a user