mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
feat: interfaces for async embeddings, implement async openai (#6563)
Since it seems like #6111 will be blocked for a bit, I've forked @tyree731's fork and implemented the requested changes. This change adds support to the base Embeddings class for two methods, aembed_query and aembed_documents, those two methods supporting async equivalents of embed_query and embed_documents respectively. This ever so slightly rounds out async support within langchain, with an initial implementation of this functionality being implemented for openai. Implements https://github.com/hwchase17/langchain/issues/6109 --------- Co-authored-by: Stephen Tyree <tyree731@gmail.com>
This commit is contained in:
parent
ca24dc2d5f
commit
d718f3b6d0
@ -13,3 +13,11 @@ class Embeddings(ABC):
|
||||
@abstractmethod
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Embed query text."""
|
||||
|
||||
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Embed search docs."""
|
||||
raise NotImplementedError
|
||||
|
||||
async def aembed_query(self, text: str) -> List[float]:
|
||||
"""Embed query text."""
|
||||
raise NotImplementedError
|
||||
|
@ -18,6 +18,7 @@ from typing import (
|
||||
import numpy as np
|
||||
from pydantic import BaseModel, Extra, root_validator
|
||||
from tenacity import (
|
||||
AsyncRetrying,
|
||||
before_sleep_log,
|
||||
retry,
|
||||
retry_if_exception_type,
|
||||
@ -53,6 +54,38 @@ def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any
|
||||
)
|
||||
|
||||
|
||||
def _async_retry_decorator(embeddings: OpenAIEmbeddings) -> Any:
|
||||
import openai
|
||||
|
||||
min_seconds = 4
|
||||
max_seconds = 10
|
||||
# Wait 2^x * 1 second between each retry starting with
|
||||
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
||||
async_retrying = AsyncRetrying(
|
||||
reraise=True,
|
||||
stop=stop_after_attempt(embeddings.max_retries),
|
||||
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
||||
retry=(
|
||||
retry_if_exception_type(openai.error.Timeout)
|
||||
| retry_if_exception_type(openai.error.APIError)
|
||||
| retry_if_exception_type(openai.error.APIConnectionError)
|
||||
| retry_if_exception_type(openai.error.RateLimitError)
|
||||
| retry_if_exception_type(openai.error.ServiceUnavailableError)
|
||||
),
|
||||
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||||
)
|
||||
|
||||
def wrap(func: Callable) -> Callable:
|
||||
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
|
||||
async for _ in async_retrying:
|
||||
return await func(*args, **kwargs)
|
||||
raise AssertionError("this is unreachable")
|
||||
|
||||
return wrapped_f
|
||||
|
||||
return wrap
|
||||
|
||||
|
||||
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
|
||||
"""Use tenacity to retry the embedding call."""
|
||||
retry_decorator = _create_retry_decorator(embeddings)
|
||||
@ -64,6 +97,16 @@ def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
|
||||
return _embed_with_retry(**kwargs)
|
||||
|
||||
|
||||
async def async_embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
|
||||
"""Use tenacity to retry the embedding call."""
|
||||
|
||||
@_async_retry_decorator(embeddings)
|
||||
async def _async_embed_with_retry(**kwargs: Any) -> Any:
|
||||
return await embeddings.client.acreate(**kwargs)
|
||||
|
||||
return await _async_embed_with_retry(**kwargs)
|
||||
|
||||
|
||||
class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
"""Wrapper around OpenAI embedding models.
|
||||
|
||||
@ -269,6 +312,70 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
|
||||
return embeddings
|
||||
|
||||
# please refer to
|
||||
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
|
||||
async def _aget_len_safe_embeddings(
|
||||
self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
|
||||
) -> List[List[float]]:
|
||||
embeddings: List[List[float]] = [[] for _ in range(len(texts))]
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tiktoken python package. "
|
||||
"This is needed in order to for OpenAIEmbeddings. "
|
||||
"Please install it with `pip install tiktoken`."
|
||||
)
|
||||
|
||||
tokens = []
|
||||
indices = []
|
||||
encoding = tiktoken.model.encoding_for_model(self.model)
|
||||
for i, text in enumerate(texts):
|
||||
if self.model.endswith("001"):
|
||||
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
|
||||
# replace newlines, which can negatively affect performance.
|
||||
text = text.replace("\n", " ")
|
||||
token = encoding.encode(
|
||||
text,
|
||||
allowed_special=self.allowed_special,
|
||||
disallowed_special=self.disallowed_special,
|
||||
)
|
||||
for j in range(0, len(token), self.embedding_ctx_length):
|
||||
tokens += [token[j : j + self.embedding_ctx_length]]
|
||||
indices += [i]
|
||||
|
||||
batched_embeddings = []
|
||||
_chunk_size = chunk_size or self.chunk_size
|
||||
for i in range(0, len(tokens), _chunk_size):
|
||||
response = await async_embed_with_retry(
|
||||
self,
|
||||
input=tokens[i : i + _chunk_size],
|
||||
**self._invocation_params,
|
||||
)
|
||||
batched_embeddings += [r["embedding"] for r in response["data"]]
|
||||
|
||||
results: List[List[List[float]]] = [[] for _ in range(len(texts))]
|
||||
num_tokens_in_batch: List[List[int]] = [[] for _ in range(len(texts))]
|
||||
for i in range(len(indices)):
|
||||
results[indices[i]].append(batched_embeddings[i])
|
||||
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
|
||||
|
||||
for i in range(len(texts)):
|
||||
_result = results[i]
|
||||
if len(_result) == 0:
|
||||
average = (
|
||||
await async_embed_with_retry(
|
||||
self,
|
||||
input="",
|
||||
**self._invocation_params,
|
||||
)
|
||||
)["data"][0]["embedding"]
|
||||
else:
|
||||
average = np.average(_result, axis=0, weights=num_tokens_in_batch[i])
|
||||
embeddings[i] = (average / np.linalg.norm(average)).tolist()
|
||||
|
||||
return embeddings
|
||||
|
||||
def _embedding_func(self, text: str, *, engine: str) -> List[float]:
|
||||
"""Call out to OpenAI's embedding endpoint."""
|
||||
# handle large input text
|
||||
@ -287,6 +394,24 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
"data"
|
||||
][0]["embedding"]
|
||||
|
||||
async def _aembedding_func(self, text: str, *, engine: str) -> List[float]:
|
||||
"""Call out to OpenAI's embedding endpoint."""
|
||||
# handle large input text
|
||||
if len(text) > self.embedding_ctx_length:
|
||||
return (await self._aget_len_safe_embeddings([text], engine=engine))[0]
|
||||
else:
|
||||
if self.model.endswith("001"):
|
||||
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
|
||||
# replace newlines, which can negatively affect performance.
|
||||
text = text.replace("\n", " ")
|
||||
return (
|
||||
await async_embed_with_retry(
|
||||
self,
|
||||
input=[text],
|
||||
**self._invocation_params,
|
||||
)
|
||||
)["data"][0]["embedding"]
|
||||
|
||||
def embed_documents(
|
||||
self, texts: List[str], chunk_size: Optional[int] = 0
|
||||
) -> List[List[float]]:
|
||||
@ -304,6 +429,23 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
# than the maximum context and use length-safe embedding function.
|
||||
return self._get_len_safe_embeddings(texts, engine=self.deployment)
|
||||
|
||||
async def aembed_documents(
|
||||
self, texts: List[str], chunk_size: Optional[int] = 0
|
||||
) -> List[List[float]]:
|
||||
"""Call out to OpenAI's embedding endpoint async for embedding search docs.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
chunk_size: The chunk size of embeddings. If None, will use the chunk size
|
||||
specified by the class.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
# NOTE: to keep things simple, we assume the list may contain texts longer
|
||||
# than the maximum context and use length-safe embedding function.
|
||||
return await self._aget_len_safe_embeddings(texts, engine=self.deployment)
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to OpenAI's embedding endpoint for embedding query text.
|
||||
|
||||
@ -315,3 +457,15 @@ class OpenAIEmbeddings(BaseModel, Embeddings):
|
||||
"""
|
||||
embedding = self._embedding_func(text, engine=self.deployment)
|
||||
return embedding
|
||||
|
||||
async def aembed_query(self, text: str) -> List[float]:
|
||||
"""Call out to OpenAI's embedding endpoint async for embedding query text.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embedding for the text.
|
||||
"""
|
||||
embedding = await self._aembedding_func(text, engine=self.deployment)
|
||||
return embedding
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""Test openai embeddings."""
|
||||
import numpy as np
|
||||
import openai
|
||||
import pytest
|
||||
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
|
||||
@ -26,6 +27,19 @@ def test_openai_embedding_documents_multiple() -> None:
|
||||
assert len(output[2]) == 1536
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_openai_embedding_documents_async_multiple() -> None:
|
||||
"""Test openai embeddings."""
|
||||
documents = ["foo bar", "bar foo", "foo"]
|
||||
embedding = OpenAIEmbeddings(chunk_size=2)
|
||||
embedding.embedding_ctx_length = 8191
|
||||
output = await embedding.aembed_documents(documents)
|
||||
assert len(output) == 3
|
||||
assert len(output[0]) == 1536
|
||||
assert len(output[1]) == 1536
|
||||
assert len(output[2]) == 1536
|
||||
|
||||
|
||||
def test_openai_embedding_query() -> None:
|
||||
"""Test openai embeddings."""
|
||||
document = "foo bar"
|
||||
@ -34,6 +48,15 @@ def test_openai_embedding_query() -> None:
|
||||
assert len(output) == 1536
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_openai_embedding_async_query() -> None:
|
||||
"""Test openai embeddings."""
|
||||
document = "foo bar"
|
||||
embedding = OpenAIEmbeddings()
|
||||
output = await embedding.aembed_query(document)
|
||||
assert len(output) == 1536
|
||||
|
||||
|
||||
def test_openai_embedding_with_empty_string() -> None:
|
||||
"""Test openai embeddings with empty string."""
|
||||
document = ["", "abc"]
|
||||
|
Loading…
Reference in New Issue
Block a user