mirror of
https://github.com/hwchase17/langchain
synced 2024-11-04 06:00:26 +00:00
Add Minimax llm model to langchain (#7645)
- Description: Minimax is a great AI startup from China, recently they released their latest model and chat API, and the API is widely-spread in China. As a result, I'd like to add the Minimax llm model to Langchain. - Tag maintainer: @hwchase17, @baskaryan --------- Co-authored-by: the <tao.he@hulu.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
0ad2d5f27a
commit
d5884017a9
176
docs/extras/integrations/llms/minimax.ipynb
Normal file
176
docs/extras/integrations/llms/minimax.ipynb
Normal file
@ -0,0 +1,176 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Minimax\n",
|
||||
"\n",
|
||||
"[Minimax](https://api.minimax.chat) is a Chinese startup that provides natural language processing models for companies and individuals.\n",
|
||||
"\n",
|
||||
"This example demonstrates using Langchain to interact with Minimax."
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Setup\n",
|
||||
"\n",
|
||||
"To run this notebook, you'll need a [Minimax account](https://api.minimax.chat), an [API key](https://api.minimax.chat/user-center/basic-information/interface-key), and a [Group ID](https://api.minimax.chat/user-center/basic-information)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Single model call"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 33,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms import Minimax"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 34,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load the model\n",
|
||||
"minimax = Minimax(minimax_api_key=\"YOUR_API_KEY\", minimax_group_id=\"YOUR_GROUP_ID\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"is_executing": true
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Prompt the model\n",
|
||||
"minimax(\"What is the difference between panda and bear?\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Chained model calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# get api_key and group_id: https://api.minimax.chat/user-center/basic-information\n",
|
||||
"# We need `MINIMAX_API_KEY` and `MINIMAX_GROUP_ID`\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"MINIMAX_API_KEY\"] = \"YOUR_API_KEY\"\n",
|
||||
"os.environ[\"MINIMAX_GROUP_ID\"] = \"YOUR_GROUP_ID\""
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.llms import Minimax\n",
|
||||
"from langchain import PromptTemplate, LLMChain"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"template = \"\"\"Question: {question}\n",
|
||||
"\n",
|
||||
"Answer: Let's think step by step.\"\"\"\n",
|
||||
"\n",
|
||||
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm = Minimax()"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"question = \"What NBA team won the Championship in the year Jay Zhou was born?\"\n",
|
||||
"\n",
|
||||
"llm_chain.run(question)"
|
||||
],
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
}
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": ".venv",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.4"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
25
docs/extras/integrations/providers/minimax.mdx
Normal file
25
docs/extras/integrations/providers/minimax.mdx
Normal file
@ -0,0 +1,25 @@
|
||||
# Minimax
|
||||
|
||||
>[Minimax](https://api.minimax.chat) is a Chinese startup that provides natural language processing models
|
||||
> for companies and individuals.
|
||||
|
||||
## Installation and Setup
|
||||
Get a [Minimax api key](https://api.minimax.chat/user-center/basic-information/interface-key) and set it as an environment variable (`MINIMAX_API_KEY`)
|
||||
Get a [Minimax group id](https://api.minimax.chat/user-center/basic-information) and set it as an environment variable (`MINIMAX_GROUP_ID`)
|
||||
|
||||
|
||||
## LLM
|
||||
|
||||
There exists a Minimax LLM wrapper, which you can access with
|
||||
See a [usage example](/docs/modules/model_io/models/llms/integrations/minimax.html).
|
||||
|
||||
```python
|
||||
from langchain.llms import Minimax
|
||||
```
|
||||
|
||||
## Text Embedding Model
|
||||
|
||||
There exists a Minimax Embedding model, which you can access with
|
||||
```python
|
||||
from langchain.embeddings import MiniMaxEmbeddings
|
||||
```
|
@ -33,6 +33,7 @@ from langchain.llms.human import HumanInputLLM
|
||||
from langchain.llms.koboldai import KoboldApiLLM
|
||||
from langchain.llms.llamacpp import LlamaCpp
|
||||
from langchain.llms.manifest import ManifestWrapper
|
||||
from langchain.llms.minimax import Minimax
|
||||
from langchain.llms.mlflow_ai_gateway import MlflowAIGateway
|
||||
from langchain.llms.modal import Modal
|
||||
from langchain.llms.mosaicml import MosaicML
|
||||
@ -92,6 +93,7 @@ __all__ = [
|
||||
"LlamaCpp",
|
||||
"TextGen",
|
||||
"ManifestWrapper",
|
||||
"Minimax",
|
||||
"MlflowAIGateway",
|
||||
"Modal",
|
||||
"MosaicML",
|
||||
@ -152,6 +154,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
|
||||
"koboldai": KoboldApiLLM,
|
||||
"llamacpp": LlamaCpp,
|
||||
"textgen": TextGen,
|
||||
"minimax": Minimax,
|
||||
"mlflow-ai-gateway": MlflowAIGateway,
|
||||
"modal": Modal,
|
||||
"mosaic": MosaicML,
|
||||
|
155
libs/langchain/langchain/llms/minimax.py
Normal file
155
libs/langchain/langchain/llms/minimax.py
Normal file
@ -0,0 +1,155 @@
|
||||
"""Wrapper around Minimax APIs."""
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
from typing import (
|
||||
Any,
|
||||
Dict,
|
||||
List,
|
||||
Optional,
|
||||
)
|
||||
|
||||
import requests
|
||||
from pydantic import BaseModel, Extra, Field, PrivateAttr, root_validator
|
||||
|
||||
from langchain.callbacks.manager import (
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain.llms.base import LLM
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class _MinimaxEndpointClient(BaseModel):
|
||||
"""An API client that talks to a Minimax llm endpoint."""
|
||||
|
||||
host: str
|
||||
group_id: str
|
||||
api_key: str
|
||||
api_url: str
|
||||
|
||||
@root_validator(pre=True)
|
||||
def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
if "api_url" not in values:
|
||||
host = values["host"]
|
||||
group_id = values["group_id"]
|
||||
api_url = f"{host}/v1/text/chatcompletion?GroupId={group_id}"
|
||||
values["api_url"] = api_url
|
||||
return values
|
||||
|
||||
def post(self, request: Any) -> Any:
|
||||
headers = {"Authorization": f"Bearer {self.api_key}"}
|
||||
response = requests.post(self.api_url, headers=headers, json=request)
|
||||
# TODO: error handling and automatic retries
|
||||
if not response.ok:
|
||||
raise ValueError(f"HTTP {response.status_code} error: {response.text}")
|
||||
if response.json()["base_resp"]["status_code"] > 0:
|
||||
raise ValueError(
|
||||
f"API {response.json()['base_resp']['status_code']}"
|
||||
f" error: {response.json()['base_resp']['status_msg']}"
|
||||
)
|
||||
return response.json()["reply"]
|
||||
|
||||
|
||||
class Minimax(LLM):
|
||||
"""Wrapper around Minimax large language models.
|
||||
To use, you should have the environment variable
|
||||
``MINIMAX_API_KEY`` and ``MINIMAX_GROUP_ID`` set with your API key,
|
||||
or pass them as a named parameter to the constructor.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
from langchain.llms.minimax import Minimax
|
||||
minimax = Minimax(model="<model_name>", minimax_api_key="my-api-key",
|
||||
minimax_group_id="my-group-id")
|
||||
"""
|
||||
|
||||
_client: _MinimaxEndpointClient = PrivateAttr()
|
||||
model: str = "abab5.5-chat"
|
||||
"""Model name to use."""
|
||||
max_tokens: int = 256
|
||||
"""Denotes the number of tokens to predict per generation."""
|
||||
temperature: float = 0.7
|
||||
"""A non-negative float that tunes the degree of randomness in generation."""
|
||||
top_p: float = 0.95
|
||||
"""Total probability mass of tokens to consider at each step."""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
||||
minimax_api_host: Optional[str] = None
|
||||
minimax_group_id: Optional[str] = None
|
||||
minimax_api_key: Optional[str] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["minimax_api_key"] = get_from_dict_or_env(
|
||||
values, "minimax_api_key", "MINIMAX_API_KEY"
|
||||
)
|
||||
values["minimax_group_id"] = get_from_dict_or_env(
|
||||
values, "minimax_group_id", "MINIMAX_GROUP_ID"
|
||||
)
|
||||
# Get custom api url from environment.
|
||||
values["minimax_api_host"] = get_from_dict_or_env(
|
||||
values,
|
||||
"minimax_api_host",
|
||||
"MINIMAX_API_HOST",
|
||||
default="https://api.minimax.chat",
|
||||
)
|
||||
return values
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling OpenAI API."""
|
||||
return {
|
||||
"model": self.model,
|
||||
"tokens_to_generate": self.max_tokens,
|
||||
"temperature": self.temperature,
|
||||
"top_p": self.top_p,
|
||||
**self.model_kwargs,
|
||||
}
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model": self.model}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "minimax"
|
||||
|
||||
def __init__(self, **data: Any):
|
||||
super().__init__(**data)
|
||||
self._client = _MinimaxEndpointClient(
|
||||
host=self.minimax_api_host,
|
||||
api_key=self.minimax_api_key,
|
||||
group_id=self.minimax_group_id,
|
||||
)
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
r"""Call out to Minimax's completion endpoint to chat
|
||||
Args:
|
||||
prompt: The prompt to pass into the model.
|
||||
Returns:
|
||||
The string generated by the model.
|
||||
Example:
|
||||
.. code-block:: python
|
||||
response = minimax("Tell me a joke.")
|
||||
"""
|
||||
request = self._default_params
|
||||
request["messages"] = [{"sender_type": "USER", "text": prompt}]
|
||||
request.update(kwargs)
|
||||
response = self._client.post(request)
|
||||
|
||||
return response
|
@ -0,0 +1,9 @@
|
||||
"""Test Minimax API wrapper."""
|
||||
from langchain.llms.minimax import Minimax
|
||||
|
||||
|
||||
def test_minimax_call() -> None:
|
||||
"""Test valid call to minimax."""
|
||||
llm = Minimax(max_tokens=10)
|
||||
output = llm("Hello world!")
|
||||
assert isinstance(output, str)
|
Loading…
Reference in New Issue
Block a user