Add Minimax llm model to langchain (#7645)

- Description: Minimax is a great AI startup from China, recently they
released their latest model and chat API, and the API is widely-spread
in China. As a result, I'd like to add the Minimax llm model to
Langchain.
- Tag maintainer: @hwchase17, @baskaryan

---------

Co-authored-by: the <tao.he@hulu.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
HeTaoPKU 2023-07-28 13:53:23 +08:00 committed by GitHub
parent 0ad2d5f27a
commit d5884017a9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 368 additions and 0 deletions

View File

@ -0,0 +1,176 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Minimax\n",
"\n",
"[Minimax](https://api.minimax.chat) is a Chinese startup that provides natural language processing models for companies and individuals.\n",
"\n",
"This example demonstrates using Langchain to interact with Minimax."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup\n",
"\n",
"To run this notebook, you'll need a [Minimax account](https://api.minimax.chat), an [API key](https://api.minimax.chat/user-center/basic-information/interface-key), and a [Group ID](https://api.minimax.chat/user-center/basic-information)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Single model call"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import Minimax"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"# Load the model\n",
"minimax = Minimax(minimax_api_key=\"YOUR_API_KEY\", minimax_group_id=\"YOUR_GROUP_ID\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"pycharm": {
"is_executing": true
}
},
"outputs": [],
"source": [
"# Prompt the model\n",
"minimax(\"What is the difference between panda and bear?\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chained model calls"
]
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"# get api_key and group_id: https://api.minimax.chat/user-center/basic-information\n",
"# We need `MINIMAX_API_KEY` and `MINIMAX_GROUP_ID`\n",
"\n",
"import os\n",
"\n",
"os.environ[\"MINIMAX_API_KEY\"] = \"YOUR_API_KEY\"\n",
"os.environ[\"MINIMAX_GROUP_ID\"] = \"YOUR_GROUP_ID\""
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"from langchain.llms import Minimax\n",
"from langchain import PromptTemplate, LLMChain"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"template = \"\"\"Question: {question}\n",
"\n",
"Answer: Let's think step by step.\"\"\"\n",
"\n",
"prompt = PromptTemplate(template=template, input_variables=[\"question\"])"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"llm = Minimax()"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"llm_chain = LLMChain(prompt=prompt, llm=llm)"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"question = \"What NBA team won the Championship in the year Jay Zhou was born?\"\n",
"\n",
"llm_chain.run(question)"
],
"metadata": {
"collapsed": false
}
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -0,0 +1,25 @@
# Minimax
>[Minimax](https://api.minimax.chat) is a Chinese startup that provides natural language processing models
> for companies and individuals.
## Installation and Setup
Get a [Minimax api key](https://api.minimax.chat/user-center/basic-information/interface-key) and set it as an environment variable (`MINIMAX_API_KEY`)
Get a [Minimax group id](https://api.minimax.chat/user-center/basic-information) and set it as an environment variable (`MINIMAX_GROUP_ID`)
## LLM
There exists a Minimax LLM wrapper, which you can access with
See a [usage example](/docs/modules/model_io/models/llms/integrations/minimax.html).
```python
from langchain.llms import Minimax
```
## Text Embedding Model
There exists a Minimax Embedding model, which you can access with
```python
from langchain.embeddings import MiniMaxEmbeddings
```

View File

@ -33,6 +33,7 @@ from langchain.llms.human import HumanInputLLM
from langchain.llms.koboldai import KoboldApiLLM
from langchain.llms.llamacpp import LlamaCpp
from langchain.llms.manifest import ManifestWrapper
from langchain.llms.minimax import Minimax
from langchain.llms.mlflow_ai_gateway import MlflowAIGateway
from langchain.llms.modal import Modal
from langchain.llms.mosaicml import MosaicML
@ -92,6 +93,7 @@ __all__ = [
"LlamaCpp",
"TextGen",
"ManifestWrapper",
"Minimax",
"MlflowAIGateway",
"Modal",
"MosaicML",
@ -152,6 +154,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
"koboldai": KoboldApiLLM,
"llamacpp": LlamaCpp,
"textgen": TextGen,
"minimax": Minimax,
"mlflow-ai-gateway": MlflowAIGateway,
"modal": Modal,
"mosaic": MosaicML,

View File

@ -0,0 +1,155 @@
"""Wrapper around Minimax APIs."""
from __future__ import annotations
import logging
from typing import (
Any,
Dict,
List,
Optional,
)
import requests
from pydantic import BaseModel, Extra, Field, PrivateAttr, root_validator
from langchain.callbacks.manager import (
CallbackManagerForLLMRun,
)
from langchain.llms.base import LLM
from langchain.utils import get_from_dict_or_env
logger = logging.getLogger(__name__)
class _MinimaxEndpointClient(BaseModel):
"""An API client that talks to a Minimax llm endpoint."""
host: str
group_id: str
api_key: str
api_url: str
@root_validator(pre=True)
def set_api_url(cls, values: Dict[str, Any]) -> Dict[str, Any]:
if "api_url" not in values:
host = values["host"]
group_id = values["group_id"]
api_url = f"{host}/v1/text/chatcompletion?GroupId={group_id}"
values["api_url"] = api_url
return values
def post(self, request: Any) -> Any:
headers = {"Authorization": f"Bearer {self.api_key}"}
response = requests.post(self.api_url, headers=headers, json=request)
# TODO: error handling and automatic retries
if not response.ok:
raise ValueError(f"HTTP {response.status_code} error: {response.text}")
if response.json()["base_resp"]["status_code"] > 0:
raise ValueError(
f"API {response.json()['base_resp']['status_code']}"
f" error: {response.json()['base_resp']['status_msg']}"
)
return response.json()["reply"]
class Minimax(LLM):
"""Wrapper around Minimax large language models.
To use, you should have the environment variable
``MINIMAX_API_KEY`` and ``MINIMAX_GROUP_ID`` set with your API key,
or pass them as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.llms.minimax import Minimax
minimax = Minimax(model="<model_name>", minimax_api_key="my-api-key",
minimax_group_id="my-group-id")
"""
_client: _MinimaxEndpointClient = PrivateAttr()
model: str = "abab5.5-chat"
"""Model name to use."""
max_tokens: int = 256
"""Denotes the number of tokens to predict per generation."""
temperature: float = 0.7
"""A non-negative float that tunes the degree of randomness in generation."""
top_p: float = 0.95
"""Total probability mass of tokens to consider at each step."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
minimax_api_host: Optional[str] = None
minimax_group_id: Optional[str] = None
minimax_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["minimax_api_key"] = get_from_dict_or_env(
values, "minimax_api_key", "MINIMAX_API_KEY"
)
values["minimax_group_id"] = get_from_dict_or_env(
values, "minimax_group_id", "MINIMAX_GROUP_ID"
)
# Get custom api url from environment.
values["minimax_api_host"] = get_from_dict_or_env(
values,
"minimax_api_host",
"MINIMAX_API_HOST",
default="https://api.minimax.chat",
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
"model": self.model,
"tokens_to_generate": self.max_tokens,
"temperature": self.temperature,
"top_p": self.top_p,
**self.model_kwargs,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {**{"model": self.model}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "minimax"
def __init__(self, **data: Any):
super().__init__(**data)
self._client = _MinimaxEndpointClient(
host=self.minimax_api_host,
api_key=self.minimax_api_key,
group_id=self.minimax_group_id,
)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
r"""Call out to Minimax's completion endpoint to chat
Args:
prompt: The prompt to pass into the model.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = minimax("Tell me a joke.")
"""
request = self._default_params
request["messages"] = [{"sender_type": "USER", "text": prompt}]
request.update(kwargs)
response = self._client.post(request)
return response

View File

@ -0,0 +1,9 @@
"""Test Minimax API wrapper."""
from langchain.llms.minimax import Minimax
def test_minimax_call() -> None:
"""Test valid call to minimax."""
llm = Minimax(max_tokens=10)
output = llm("Hello world!")
assert isinstance(output, str)