mirror of
https://github.com/hwchase17/langchain
synced 2024-11-06 03:20:49 +00:00
rfc: instruct embeddings (#811)
Co-authored-by: seanaedmiston <seane999@gmail.com>
This commit is contained in:
parent
576609e665
commit
d564308e0f
@ -255,10 +255,68 @@
|
|||||||
"query_result = embeddings.embed_query(text)"
|
"query_result = embeddings.embed_query(text)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "59428e05",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## InstructEmbeddings\n",
|
||||||
|
"Let's load the HuggingFace instruct Embeddings class."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"id": "92c5b61e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.embeddings import HuggingFaceInstructEmbeddings"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"id": "062547b9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"load INSTRUCTOR_Transformer\n",
|
||||||
|
"max_seq_length 512\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"embeddings = HuggingFaceInstructEmbeddings(query_instruction=\"Represent the query for retrieval: \")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"id": "e1dcc4bd",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"text = \"This is a test document.\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 11,
|
||||||
|
"id": "90f0db94",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"query_result = embeddings.embed_query(text)"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"id": "90f0db94",
|
"id": "a961cdb5",
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": []
|
"source": []
|
||||||
|
@ -3,7 +3,10 @@ import logging
|
|||||||
from typing import Any
|
from typing import Any
|
||||||
|
|
||||||
from langchain.embeddings.cohere import CohereEmbeddings
|
from langchain.embeddings.cohere import CohereEmbeddings
|
||||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
from langchain.embeddings.huggingface import (
|
||||||
|
HuggingFaceEmbeddings,
|
||||||
|
HuggingFaceInstructEmbeddings,
|
||||||
|
)
|
||||||
from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
|
from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
|
||||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||||
from langchain.embeddings.tensorflow_hub import TensorflowHubEmbeddings
|
from langchain.embeddings.tensorflow_hub import TensorflowHubEmbeddings
|
||||||
@ -16,6 +19,7 @@ __all__ = [
|
|||||||
"CohereEmbeddings",
|
"CohereEmbeddings",
|
||||||
"HuggingFaceHubEmbeddings",
|
"HuggingFaceHubEmbeddings",
|
||||||
"TensorflowHubEmbeddings",
|
"TensorflowHubEmbeddings",
|
||||||
|
"HuggingFaceInstructEmbeddings",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -6,6 +6,11 @@ from pydantic import BaseModel, Extra
|
|||||||
from langchain.embeddings.base import Embeddings
|
from langchain.embeddings.base import Embeddings
|
||||||
|
|
||||||
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
|
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
|
||||||
|
DEFAULT_INSTRUCT_MODEL = "hkunlp/instructor-large"
|
||||||
|
DEFAULT_EMBED_INSTRUCTION = "Represent the document for retrieval: "
|
||||||
|
DEFAULT_QUERY_INSTRUCTION = (
|
||||||
|
"Represent the question for retrieving supporting documents: "
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
||||||
@ -68,3 +73,68 @@ class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
|||||||
text = text.replace("\n", " ")
|
text = text.replace("\n", " ")
|
||||||
embedding = self.client.encode(text)
|
embedding = self.client.encode(text)
|
||||||
return embedding.tolist()
|
return embedding.tolist()
|
||||||
|
|
||||||
|
|
||||||
|
class HuggingFaceInstructEmbeddings(BaseModel, Embeddings):
|
||||||
|
"""Wrapper around sentence_transformers embedding models.
|
||||||
|
|
||||||
|
To use, you should have the ``sentence_transformers`` python package installed.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
||||||
|
model_name = "hkunlp/instructor-large"
|
||||||
|
hf = HuggingFaceInstructEmbeddings(model_name=model_name)
|
||||||
|
"""
|
||||||
|
|
||||||
|
client: Any #: :meta private:
|
||||||
|
model_name: str = DEFAULT_INSTRUCT_MODEL
|
||||||
|
"""Model name to use."""
|
||||||
|
embed_instruction: str = DEFAULT_EMBED_INSTRUCTION
|
||||||
|
"""Instruction to use for embedding documents."""
|
||||||
|
query_instruction: str = DEFAULT_QUERY_INSTRUCTION
|
||||||
|
"""Instruction to use for embedding query."""
|
||||||
|
|
||||||
|
def __init__(self, **kwargs: Any):
|
||||||
|
"""Initialize the sentence_transformer."""
|
||||||
|
super().__init__(**kwargs)
|
||||||
|
try:
|
||||||
|
from InstructorEmbedding import INSTRUCTOR
|
||||||
|
|
||||||
|
self.client = INSTRUCTOR(self.model_name)
|
||||||
|
except ImportError as e:
|
||||||
|
raise ValueError("Dependencies for InstructorEmbedding not found.") from e
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
"""Configuration for this pydantic object."""
|
||||||
|
|
||||||
|
extra = Extra.forbid
|
||||||
|
|
||||||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""Compute doc embeddings using a HuggingFace instruct model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: The list of texts to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of embeddings, one for each text.
|
||||||
|
"""
|
||||||
|
instruction_pairs = []
|
||||||
|
for text in texts:
|
||||||
|
instruction_pairs.append([self.embed_instruction, text])
|
||||||
|
embeddings = self.client.encode(instruction_pairs)
|
||||||
|
return embeddings.tolist()
|
||||||
|
|
||||||
|
def embed_query(self, text: str) -> List[float]:
|
||||||
|
"""Compute query embeddings using a HuggingFace instruct model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Embeddings for the text.
|
||||||
|
"""
|
||||||
|
instruction_pair = [self.query_instruction, text]
|
||||||
|
embedding = self.client.encode([instruction_pair])[0]
|
||||||
|
return embedding.tolist()
|
||||||
|
@ -1,7 +1,10 @@
|
|||||||
"""Test huggingface embeddings."""
|
"""Test huggingface embeddings."""
|
||||||
import unittest
|
import unittest
|
||||||
|
|
||||||
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
from langchain.embeddings.huggingface import (
|
||||||
|
HuggingFaceEmbeddings,
|
||||||
|
HuggingFaceInstructEmbeddings,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@unittest.skip("This test causes a segfault.")
|
@unittest.skip("This test causes a segfault.")
|
||||||
@ -21,3 +24,20 @@ def test_huggingface_embedding_query() -> None:
|
|||||||
embedding = HuggingFaceEmbeddings()
|
embedding = HuggingFaceEmbeddings()
|
||||||
output = embedding.embed_query(document)
|
output = embedding.embed_query(document)
|
||||||
assert len(output) == 768
|
assert len(output) == 768
|
||||||
|
|
||||||
|
|
||||||
|
def test_huggingface_instructor_embedding_documents() -> None:
|
||||||
|
"""Test huggingface embeddings."""
|
||||||
|
documents = ["foo bar"]
|
||||||
|
embedding = HuggingFaceInstructEmbeddings()
|
||||||
|
output = embedding.embed_documents(documents)
|
||||||
|
assert len(output) == 1
|
||||||
|
assert len(output[0]) == 768
|
||||||
|
|
||||||
|
|
||||||
|
def test_huggingface_instructor_embedding_query() -> None:
|
||||||
|
"""Test huggingface embeddings."""
|
||||||
|
query = "foo bar"
|
||||||
|
embedding = HuggingFaceInstructEmbeddings()
|
||||||
|
output = embedding.embed_query(query)
|
||||||
|
assert len(output) == 768
|
||||||
|
Loading…
Reference in New Issue
Block a user