Add a Pairwise Comparison Chain (#6703)

Notebook shows preference scoring between two chains and reports wilson
score interval + p value

I think I'll add the option to insert ground truth labels but doesn't
have to be in this PR
pull/6799/head
Zander Chase 1 year ago committed by GitHub
parent 2928b080f6
commit cc60fed3be
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,447 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Comparing Chain Outputs\n",
"\n",
"Suppose you have two different prompts (or LLMs). How do you know which will generate \"better\" results?\n",
"\n",
"One automated way to predict the preferred configuration is to use a `PairwiseStringEvaluator` like the `PairwiseStringEvalChain`<a name=\"cite_ref-1\"></a>[<sup>[1]</sup>](#cite_note-1). This chain prompts an LLM to select which output is preferred, given a specific input.\n",
"\n",
"For this evalution, we will need 3 things:\n",
"1. An evaluator\n",
"2. A dataset of inputs\n",
"3. 2 (or more) LLMs, Chains, or Agents to compare\n",
"\n",
"Then we will aggregate the restults to determine the preferred model.\n",
"\n",
"### Step 1. Create the Evaluator\n",
"\n",
"In this example, you will use gpt-4 to select which output is preferred."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Optional if you are tracing the notebook\n",
"%env LANGCHAIN_PROJECT=\"Comparing Chain Outputs\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.evaluation.comparison import PairwiseStringEvalChain\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-4\")\n",
"\n",
"eval_chain = PairwiseStringEvalChain.from_llm(llm=llm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 2. Select Dataset\n",
"\n",
"If you already have real usage data for your LLM, you can use a representative sample. More examples\n",
"provide more reliable results. We will use some example queries someone might have about how to use langchain here."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset parquet (/Users/wfh/.cache/huggingface/datasets/LangChainDatasets___parquet/LangChainDatasets--langchain-howto-queries-bbb748bbee7e77aa/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d852a1884480457292c90d8bd9d4f1e6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langchain.evaluation.loading import load_dataset\n",
"\n",
"dataset = load_dataset(\"langchain-howto-queries\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 3. Define Models to Compare\n",
"\n",
"We will be comparing two agents in this case."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain import SerpAPIWrapper\n",
"from langchain.agents import initialize_agent, Tool\n",
"from langchain.agents import AgentType\n",
"from langchain.chat_models import ChatOpenAI\n",
"\n",
"\n",
"# Initialize the language model\n",
"# You can add your own OpenAI API key by adding openai_api_key=\"<your_api_key>\" \n",
"llm = ChatOpenAI(temperature=0, model=\"gpt-3.5-turbo-0613\")\n",
"\n",
"# Initialize the SerpAPIWrapper for search functionality\n",
"#Replace <your_api_key> in openai_api_key=\"<your_api_key>\" with your actual SerpAPI key.\n",
"search = SerpAPIWrapper()\n",
"\n",
"# Define a list of tools offered by the agent\n",
"tools = [\n",
" Tool(\n",
" name=\"Search\",\n",
" func=search.run,\n",
" coroutine=search.arun,\n",
" description=\"Useful when you need to answer questions about current events. You should ask targeted questions.\"\n",
" ),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"functions_agent = initialize_agent(tools, llm, agent=AgentType.OPENAI_MULTI_FUNCTIONS, verbose=False)\n",
"conversations_agent = initialize_agent(tools, llm, agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION, verbose=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"list(zip(*[iter(batch_results)]*2)### Step 4. Generate Responses\n",
"\n",
"We will generate outputs for each of the models before evaluating them."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b076d6bf6680422aa9082d4bad4d98a3",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/20 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Retrying langchain.chat_models.openai.acompletion_with_retry.<locals>._completion_with_retry in 1.0 seconds as it raised ServiceUnavailableError: The server is overloaded or not ready yet..\n",
"Retrying langchain.chat_models.openai.acompletion_with_retry.<locals>._completion_with_retry in 1.0 seconds as it raised ServiceUnavailableError: The server is overloaded or not ready yet..\n"
]
}
],
"source": [
"from tqdm.notebook import tqdm\n",
"import asyncio\n",
"\n",
"results = []\n",
"agents = [functions_agent, conversations_agent]\n",
"concurrency_level = 6 # How many concurrent agents to run. May need to decrease if OpenAI is rate limiting.\n",
"\n",
"# We will only run the first 20 examples of this dataset to speed things up\n",
"# This will lead to larger confidence intervals downstream.\n",
"batch = []\n",
"for example in tqdm(dataset[:20]):\n",
" batch.extend([agent.acall(example['inputs']) for agent in agents])\n",
" if len(batch) >= concurrency_level:\n",
" batch_results = await asyncio.gather(*batch, return_exceptions=True)\n",
" results.extend(list(zip(*[iter(batch_results)]*2)))\n",
" batch = []\n",
"if batch:\n",
" batch_results = await asyncio.gather(*batch, return_exceptions=True)\n",
" results.extend(list(zip(*[iter(batch_results)]*2)))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 5. Evaluate Pairs\n",
"\n",
"Now it's time to evaluate the results. For each agent response, run the evaluation chain to select which output is preferred (or return a tie).\n",
"\n",
"Randomly select the input order to reduce the likelihood that one model will be preferred just because it is presented first."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import random\n",
"\n",
"def predict_preferences(dataset, results) -> list:\n",
" preferences = []\n",
"\n",
" for example, (res_a, res_b) in zip(dataset, results):\n",
" input_ = example['inputs']\n",
" # Flip a coin to reduce persistent position bias\n",
" if random.random() < 0.5:\n",
" pred_a, pred_b = res_a, res_b\n",
" a, b = \"a\", \"b\"\n",
" else:\n",
" pred_a, pred_b = res_b, res_a\n",
" a, b = \"b\", \"a\"\n",
" eval_res = eval_chain.evaluate_string_pairs(\n",
" output_a=pred_a['output'] if isinstance(pred_a, dict) else str(pred_a),\n",
" output_b=pred_b['output'] if isinstance(pred_b, dict) else str(pred_b),\n",
" input=input_\n",
" )\n",
" if eval_res[\"value\"] == \"A\":\n",
" preferences.append(a)\n",
" elif eval_res[\"value\"] == \"B\":\n",
" preferences.append(b)\n",
" else:\n",
" preferences.append(None) # No preference\n",
" return preferences"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"preferences = predict_preferences(dataset, results)"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"**Print out the ratio of preferences.**"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OpenAI Functions Agent: 90.00%\n",
"Structured Chat Agent: 10.00%\n"
]
}
],
"source": [
"from collections import Counter\n",
"\n",
"name_map = {\n",
" \"a\": \"OpenAI Functions Agent\",\n",
" \"b\": \"Structured Chat Agent\",\n",
"}\n",
"counts = Counter(preferences)\n",
"pref_ratios = {\n",
" k: v/len(preferences) for k, v in\n",
" counts.items()\n",
"}\n",
"for k, v in pref_ratios.items():\n",
" print(f\"{name_map.get(k)}: {v:.2%}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Estimate Confidence Intervals\n",
"\n",
"The results seem pretty clear, but if you want to have a better sense of how confident we are, that model \"A\" (the OpenAI Functions Agent) is the preferred model, we can calculate confidence intervals. \n",
"\n",
"Below, use the Wilson score to estimate the confidence interval."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from math import sqrt\n",
"\n",
"def wilson_score_interval(preferences: list, which: str = \"a\", z: float = 1.96) -> tuple:\n",
" \"\"\"Estimate the confidence interval using the Wilson score.\n",
" \n",
" See: https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval\n",
" for more details, including when to use it and when it should not be used.\n",
" \"\"\"\n",
" total_preferences = preferences.count('a') + preferences.count('b')\n",
" n_s = preferences.count(which)\n",
"\n",
" if total_preferences == 0:\n",
" return (0, 0)\n",
"\n",
" p_hat = n_s / total_preferences\n",
"\n",
" denominator = 1 + (z**2) / total_preferences\n",
" adjustment = (z / denominator) * sqrt(p_hat*(1-p_hat)/total_preferences + (z**2)/(4*total_preferences*total_preferences))\n",
" center = (p_hat + (z**2) / (2*total_preferences)) / denominator\n",
" lower_bound = min(max(center - adjustment, 0.0), 1.0)\n",
" upper_bound = min(max(center + adjustment, 0.0), 1.0)\n",
"\n",
" return (lower_bound, upper_bound)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The \"OpenAI Functions Agent\" would be preferred between 69.90% and 97.21% percent of the time (with 95% confidence).\n",
"The \"Structured Chat Agent\" would be preferred between 2.79% and 30.10% percent of the time (with 95% confidence).\n"
]
}
],
"source": [
"for which_, name in name_map.items():\n",
" low, high = wilson_score_interval(preferences, which=which_)\n",
" print(f'The \"{name}\" would be preferred between {low:.2%} and {high:.2%} percent of the time (with 95% confidence).')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Print out the p-value.**"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The p-value is 0.00040. If the null hypothesis is true (i.e., if the selected eval chain actually has no preference between the models),\n",
"then there is a 0.04025% chance of observing the OpenAI Functions Agent be preferred at least 18\n",
"times out of 20 trials.\n"
]
}
],
"source": [
"from scipy import stats\n",
"preferred_model = max(pref_ratios, key=pref_ratios.get)\n",
"successes = preferences.count(preferred_model)\n",
"n = len(preferences) - preferences.count(None)\n",
"p_value = stats.binom_test(successes, n, p=0.5, alternative='two-sided')\n",
"print(f\"\"\"The p-value is {p_value:.5f}. If the null hypothesis is true (i.e., if the selected eval chain actually has no preference between the models),\n",
"then there is a {p_value:.5%} chance of observing the {name_map.get(preferred_model)} be preferred at least {successes}\n",
"times out of {n} trials.\"\"\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<a name=\"cite_note-1\"></a>_1. Note: Automated evals are still an open research topic and are best used alongside other evaluation approaches. \n",
"LLM preferences exhibit biases, including banal ones like the order of outputs.\n",
"In choosing preferences, \"ground truth\" may not be taken into account, which may lead to scores that aren't grounded in utility._"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

@ -1 +1,35 @@
"""[BETA] Functionality relating to evaluation."""
"""Functionality relating to evaluation.
This module contains off-the-shelf evaluation chains for
grading the output of LangChain primitives such as LLMs and Chains.
Some common use cases for evaluation include:
- Grading accuracy of a response against ground truth answers: QAEvalChain
- Comparing the output of two models: PairwiseStringEvalChain
- Judging the efficacy of an agent's tool usage: TrajectoryEvalChain
- Checking whether an output complies with a set of criteria: CriteriaEvalChain
This module also contains low level APIs for making more evaluators for your
custom evaluation task. These include:
- StringEvaluator: Evaluates an output string against a reference and/or
with input context.
- PairwiseStringEvaluator: Evaluates two strings against each other.
"""
from langchain.evaluation.agents.trajectory_eval_chain import TrajectoryEvalChain
from langchain.evaluation.comparison import PairwiseStringEvalChain
from langchain.evaluation.criteria.eval_chain import CriteriaEvalChain
from langchain.evaluation.qa import ContextQAEvalChain, CotQAEvalChain, QAEvalChain
from langchain.evaluation.schema import PairwiseStringEvaluator, StringEvaluator
__all__ = [
"PairwiseStringEvalChain",
"QAEvalChain",
"CotQAEvalChain",
"ContextQAEvalChain",
"StringEvaluator",
"PairwiseStringEvaluator",
"TrajectoryEvalChain",
"CriteriaEvalChain",
]

@ -0,0 +1,34 @@
"""Comparison evaluators.
This module contains evaluators for comparing the output of two models,
be they LLMs, Chains, or otherwise. This can be used for scoring
preferences, measuring similarity / semantic equivalence between outputs,
or any other comparison task.
Example:
>>> from langchain.chat_models import ChatOpenAI
>>> from langchain.evaluation.comparison import PairwiseStringEvalChain
>>> llm = ChatOpenAI(temperature=0)
>>> chain = PairwiseStringEvalChain.from_llm(llm=llm)
>>> result = chain.evaluate_string_pairs(
... input = "What is the chemical formula for water?",
... output_a = "H2O",
... output_b = (
... "The chemical formula for water is H2O, which means"
... " there are two hydrogen atoms and one oxygen atom."
... referenc = "The chemical formula for water is H2O.",
... )
>>> print(result["text"])
# {
# "value": "B",
# "comment": "Both responses accurately state"
# " that the chemical formula for water is H2O."
# " However, Response B provides additional information"
# . " by explaining what the formula means.\n[[B]]"
# }
"""
from langchain.evaluation.comparison.eval_chain import (
PairwiseStringEvalChain,
)
__all__ = ["PairwiseStringEvalChain"]

@ -0,0 +1,205 @@
"""Base classes for comparing the output of two models."""
from __future__ import annotations
from typing import Any, Optional
from pydantic import Field
from langchain.base_language import BaseLanguageModel
from langchain.callbacks.manager import Callbacks
from langchain.chains.llm import LLMChain
from langchain.evaluation.comparison.prompt import PROMPT, PROMPT_WITH_REFERENCE
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import BaseOutputParser
class PairwiseStringResultOutputParser(BaseOutputParser[dict]):
"""A parser for the output of the PairwiseStringEvalChain."""
@property
def _type(self) -> str:
return "pairwise_string_result"
def parse(self, text: str) -> Any:
"""Parse the output text.
Args:
text (str): The output text to parse.
Returns:
Any: The parsed output.
"""
reasoning, verdict = text.strip().rsplit("\n", maxsplit=1)
verdict = verdict.strip("[").strip("]")
if verdict not in {"A", "B", "C"}:
raise ValueError(
f"Invalid verdict: {verdict}. "
"Verdict must be one of 'A', 'B', or 'C'."
)
# C means the models are tied. Return 'None' meaning no preference
verdict_ = None if verdict == "C" else verdict
score = {
"A": 1,
"B": 0,
None: 0.5,
}.get(verdict_)
return {
"reasoning": reasoning,
"value": verdict_,
"score": score,
}
class PairwiseStringEvalChain(LLMChain):
"""A chain for comparing the output of two models.
Example:
>>> from langchain.chat_models import ChatOpenAI
>>> from langchain.evaluation.comparison import PairwiseStringEvalChain
>>> llm = ChatOpenAI(temperature=0)
>>> chain = PairwiseStringEvalChain.from_llm(llm=llm)
>>> result = chain.evaluate_string_pairs(
... input = "What is the chemical formula for water?",
... output_a = "H2O",
... output_b = (
... "The chemical formula for water is H2O, which means"
... " there are two hydrogen atoms and one oxygen atom."
... referenc = "The chemical formula for water is H2O.",
... )
>>> print(result["text"])
# {
# "value": "B",
# "comment": "Both responses accurately state"
# " that the chemical formula for water is H2O."
# " However, Response B provides additional information"
# . " by explaining what the formula means.\n[[B]]"
# }
"""
output_parser: BaseOutputParser = Field(
default_factory=PairwiseStringResultOutputParser
)
@classmethod
def from_llm(
cls,
*,
llm: BaseLanguageModel,
prompt: Optional[PromptTemplate] = None,
require_reference: bool = False,
**kwargs: Any,
) -> PairwiseStringEvalChain:
"""Initialize the PairwiseStringEvalChain from an LLM.
Args:
llm (BaseLanguageModel): The LLM to use.
prompt (PromptTemplate, optional): The prompt to use.
require_reference (bool, optional): Whether to require a reference
string. Defaults to False.
**kwargs (Any): Additional keyword arguments.
Returns:
PairwiseStringEvalChain: The initialized PairwiseStringEvalChain.
"""
expected_input_vars = {"output_a", "output_b", "input"}
if prompt is None:
if require_reference:
expected_input_vars.add("reference")
prompt_ = PROMPT_WITH_REFERENCE
else:
prompt_ = PROMPT
else:
if require_reference:
expected_input_vars.add("reference")
prompt_ = prompt
if expected_input_vars != set(prompt_.input_variables):
raise ValueError(
f"Input variables should be {expected_input_vars}, "
f"but got {prompt_.input_variables}"
)
return cls(llm=llm, prompt=prompt_, **kwargs)
def _prepare_input(
self, output_a: str, output_b: str, input: str, reference: Optional[str]
) -> dict:
input_ = {
"output_a": output_a,
"output_b": output_b,
"input": input,
}
if reference is not None and "reference" in self.prompt.input_variables:
input_["reference"] = reference
return input_
def evaluate_string_pairs(
self,
*,
output_a: str,
output_b: str,
input: str,
reference: Optional[str] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> dict:
"""Evaluate whether output A is preferred to output B.
Args:
output_a (str): The output string from the first model.
output_b (str): The output string from the second model.
input (str): The input or task string.
callbacks (Callbacks, optional): The callbacks to use.
reference (str, optional): The reference string, if any.
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- reasoning: The reasoning for the preference.
- value: The preference value, which is either 'A', 'B', or None
for no preference.
- score: The preference score, which is 1 for 'A', 0 for 'B',
and 0.5 for None.
"""
input_ = self._prepare_input(output_a, output_b, input, reference)
result = self(
inputs=input_,
callbacks=callbacks,
**kwargs,
)
return result["text"]
async def aevaluate_string_pairs(
self,
*,
output_a: str,
output_b: str,
input: str,
reference: Optional[str] = None,
callbacks: Callbacks = None,
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate whether output A is preferred to output B.
Args:
output_a (str): The output string from the first model.
output_b (str): The output string from the second model.
input (str): The input or task string.
callbacks (Callbacks, optional): The callbacks to use.
reference (str, optional): The reference string, if any.
**kwargs (Any): Additional keyword arguments.
Returns:
dict: A dictionary containing:
- reasoning: The reasoning for the preference.
- value: The preference value, which is either 'A', 'B', or None
for no preference.
- score: The preference score, which is 1 for 'A', 0 for 'B',
and 0.5 for None.
"""
input_ = self._prepare_input(output_a, output_b, input, reference)
result = await self.acall(
inputs=input_,
callbacks=callbacks,
**kwargs,
)
return result["text"]

@ -0,0 +1,64 @@
"""Prompts for comparing the outputs of two models for a given question.
This prompt is used to compare two responses and evaluate which one best follows the instructions
and answers the question. The prompt is based on the paper from
Zheng, et. al. https://arxiv.org/abs/2306.05685
"""
# flake8: noqa
from langchain.prompts import PromptTemplate
template = """Act as a fair judge and rate the two responses to the question below.\
Choose the response that best followed the instructions and answered the question.\
Your assessment should weigh helpfulness, relevance, accuracy, depth, creativity, and detail.\
Start by comparing both responses and give a brief rationale.\
Avoid bias from the order of presentation or response length.
After giving your rationale, make your final decision using this format:\
"[[A]]" if assistant A is better, "[[B]]" if assistant B is better,\
and "[[C]]" for a tie. Finally, repeat the decision again on its own on a new line.
[QUESTION]
{input}
[/QUESTION]
[RESPONSE A]
{output_a}
[/RESPONSE A]
[RESPONSE B]
{output_b}
[/RESPONSE B]"""
PROMPT = PromptTemplate(
input_variables=["input", "output_a", "output_b"], template=template
)
template = """Act as a fair judge and rate the two responses to the question below.\
Choose the response that best followed the instructions and answered the question.\
Your assessment should weigh helpfulness, relevance, accuracy, depth, creativity, and detail.\
Start by comparing both responses and give a brief rationale.\
Avoid bias from the order of presentation or response length.\
Weigh accuracy based on the following ground truth reference\
answer to the question:
[REFERENCE]
{reference}
[/REFERENCE]
After giving your rationale, make your final decision using this format:\
"[[A]]" if assistant A is better, "[[B]]" if assistant B is better,\
and "[[C]]" for a tie. Finally, repeat the decision again on its own on a new line.
[QUESTION]
{input}
[/QUESTION]
[RESPONSE A]
{output_a}
[/RESPONSE A]
[RESPONSE B]
{output_b}
[/RESPONSE B]"""
PROMPT_WITH_REFERENCE = PromptTemplate(
input_variables=["input", "output_a", "output_b", "reference"], template=template
)

@ -14,7 +14,7 @@ class StringEvaluator(Protocol):
prediction: str,
reference: Optional[str] = None,
input: Optional[str] = None,
**kwargs: Any
**kwargs: Any,
) -> dict:
"""Evaluate Chain or LLM output, based on optional input and label.
@ -34,7 +34,7 @@ class StringEvaluator(Protocol):
prediction: str,
reference: Optional[str] = None,
input: Optional[str] = None,
**kwargs: Any
**kwargs: Any,
) -> dict:
"""Asynchronously evaluate Chain or LLM output, based on optional
input and label.
@ -48,6 +48,66 @@ class StringEvaluator(Protocol):
Returns:
dict: The evaluation results containing the score or value.
"""
return self.evaluate_strings(
prediction=prediction, reference=reference, input=input, **kwargs
raise NotImplementedError(
f"{self.__class__.__name__} hasn't implemented an "
"async aevaluate_strings method."
)
@runtime_checkable
class PairwiseStringEvaluator(Protocol):
"""A protocol for comparing the output of two models."""
@abstractmethod
def evaluate_string_pairs(
self,
*,
output_a: str,
output_b: str,
reference: Optional[str] = None,
input: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Evaluate the output string pairs.
Args:
output_a (str): The output string from the first model.
output_b (str): The output string from the second model.
reference (str, optional): The expected output / reference
string. Defaults to None.
input (str, optional): The input string. Defaults to None.
**kwargs (Any): Additional keyword arguments, such
as callbacks and optional reference strings.
Returns:
dict: A dictionary containing the preference, scores, and/or
other information.
"""
async def aevaluate_string_pairs(
self,
output_a: str,
output_b: str,
reference: Optional[str] = None,
input: Optional[str] = None,
**kwargs: Any,
) -> dict:
"""Evaluate the output string pairs.
Args:
output_a (str): The output string from the first model.
output_b (str): The output string from the second model.
reference (str, optional): The expected output / reference
string. Defaults to None.
input (str, optional): The input string. Defaults to None.
**kwargs (Any): Additional keyword arguments, such
as callbacks and optional reference strings.
Returns:
dict: A dictionary containing the preference, scores, and/or
other information.
"""
raise NotImplementedError(
f"{self.__class__.__name__} hasn't implemented an async "
"aevaluate_string_pairs method."
)

@ -0,0 +1,39 @@
"""Test the comparison chains."""
from langchain.evaluation.comparison.eval_chain import PairwiseStringEvalChain
from tests.unit_tests.llms.fake_llm import FakeLLM
def test_pairwise_string_comparison_chain() -> None:
llm = FakeLLM(
queries={
"a": "The values are the same.\n[[C]]",
"b": "A is clearly better than b.\n[[A]]",
"c": "B is clearly better than a.\n[[B]]",
},
sequential_responses=True,
)
chain = PairwiseStringEvalChain.from_llm(llm=llm)
res = chain.evaluate_string_pairs(
output_a="I like pie.",
output_b="I love pie.",
input="What is your favorite food?",
)
assert res["value"] is None
assert res["score"] == 0.5
assert res["reasoning"] == "The values are the same."
res = chain.evaluate_string_pairs(
output_a="I like pie.",
output_b="I like pie.",
input="What is your favorite food?",
)
assert res["value"] == "A"
assert res["score"] == 1
res = chain.evaluate_string_pairs(
output_a="I like pie.",
output_b="I hate pie.",
input="What is your favorite food?",
)
assert res["value"] == "B"
assert res["score"] == 0
Loading…
Cancel
Save