community[patch]: Fix YandexGPT embeddings (#19720)

Fix of YandexGPT embeddings. 

The current version uses a single `model_name` for queries and
documents, essentially making the `embed_documents` and `embed_query`
methods the same. Yandex has a different endpoint (`model_uri`) for
encoding documents, see
[this](https://yandex.cloud/en/docs/yandexgpt/concepts/embeddings). The
bug may impact retrievers built with `YandexGPTEmbeddings` (for instance
FAISS database as retriever) since they use both `embed_documents` and
`embed_query`.

A simple snippet to test the behaviour:
```python
from langchain_community.embeddings.yandex import YandexGPTEmbeddings
embeddings = YandexGPTEmbeddings()
q_emb = embeddings.embed_query('hello world')
doc_emb = embeddings.embed_documents(['hello world', 'hello world'])
q_emb == doc_emb[0]
```
The response is `True` with the current version and `False` with the
changes I made.


Twitter: @egor_krash

---------

Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com>
Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
Egor Krasheninnikov 2024-04-14 00:23:01 +01:00 committed by GitHub
parent 4be7ca7b4c
commit c8391d4ff1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 59 additions and 15 deletions

View File

@ -6,7 +6,7 @@ import time
from typing import Any, Callable, Dict, List
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from tenacity import (
before_sleep_log,
@ -33,14 +33,13 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
To use the default model specify the folder ID in a parameter `folder_id`
or in an environment variable `YC_FOLDER_ID`.
Or specify the model URI in a constructor parameter `model_uri`
Example:
.. code-block:: python
from langchain_community.embeddings.yandex import YandexGPTEmbeddings
embeddings = YandexGPTEmbeddings(iam_token="t1.9eu...", model_uri="emb://<folder-id>/text-search-query/latest")
"""
embeddings = YandexGPTEmbeddings(iam_token="t1.9eu...", folder_id=<folder-id>)
""" # noqa: E501
iam_token: SecretStr = "" # type: ignore[assignment]
"""Yandex Cloud IAM token for service account
@ -48,12 +47,16 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
api_key: SecretStr = "" # type: ignore[assignment]
"""Yandex Cloud Api Key for service account
with the `ai.languageModels.user` role"""
model_uri: str = ""
"""Model uri to use."""
model_uri: str = Field(default="", alias="query_model_uri")
"""Query model uri to use."""
doc_model_uri: str = ""
"""Doc model uri to use."""
folder_id: str = ""
"""Yandex Cloud folder ID"""
model_name: str = "text-search-query"
"""Model name to use."""
doc_model_name: str = "text-search-doc"
"""Doc model name to use."""
model_name: str = Field(default="text-search-query", alias="query_model_name")
"""Query model name to use."""
model_version: str = "latest"
"""Model version to use."""
url: str = "llm.api.cloud.yandex.net:443"
@ -63,6 +66,11 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
sleep_interval: float = 0.0
"""Delay between API requests"""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that iam token exists in environment."""
@ -89,12 +97,19 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
values["_grpc_metadata"] = (
("authorization", f"Api-Key {values['api_key'].get_secret_value()}"),
)
if values["model_uri"] == "" and values["folder_id"] == "":
raise ValueError("Either 'model_uri' or 'folder_id' must be provided.")
if not values["model_uri"]:
if not values.get("doc_model_uri"):
if values["folder_id"] == "":
raise ValueError("'doc_model_uri' or 'folder_id' must be provided.")
values[
"doc_model_uri"
] = f"emb://{values['folder_id']}/{values['doc_model_name']}/{values['model_version']}" # noqa: E501
if not values.get("model_uri"):
if values["folder_id"] == "":
raise ValueError("'model_uri' or 'folder_id' must be provided.")
values[
"model_uri"
] = f"emb://{values['folder_id']}/{values['model_name']}/{values['model_version']}"
] = f"emb://{values['folder_id']}/{values['model_name']}/{values['model_version']}" # noqa: E501
return values
def embed_documents(self, texts: List[str]) -> List[List[float]]:
@ -118,7 +133,7 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
Returns:
Embeddings for the text.
"""
return _embed_with_retry(self, texts=[text])[0]
return _embed_with_retry(self, texts=[text], embed_query=True)[0]
def _create_retry_decorator(llm: YandexGPTEmbeddings) -> Callable[[Any], Any]:
@ -146,7 +161,7 @@ def _embed_with_retry(llm: YandexGPTEmbeddings, **kwargs: Any) -> Any:
return _completion_with_retry(**kwargs)
def _make_request(self: YandexGPTEmbeddings, texts: List[str]): # type: ignore[no-untyped-def]
def _make_request(self: YandexGPTEmbeddings, texts: List[str], **kwargs): # type: ignore[no-untyped-def]
try:
import grpc
@ -172,9 +187,14 @@ def _make_request(self: YandexGPTEmbeddings, texts: List[str]): # type: ignore[
result = []
channel_credentials = grpc.ssl_channel_credentials()
channel = grpc.secure_channel(self.url, channel_credentials)
# Use the query model if embed_query is True
if kwargs.get("embed_query"):
model_uri = self.model_uri
else:
model_uri = self.doc_model_uri
for text in texts:
request = TextEmbeddingRequest(model_uri=self.model_uri, text=text)
request = TextEmbeddingRequest(model_uri=model_uri, text=text)
stub = EmbeddingsServiceStub(channel)
res = stub.TextEmbedding(request, metadata=self._grpc_metadata) # type: ignore[attr-defined]
result.append(list(res.embedding))

View File

@ -0,0 +1,24 @@
import os
from langchain_community.embeddings import YandexGPTEmbeddings
def test_init() -> None:
os.environ["YC_API_KEY"] = "foo"
models = [
YandexGPTEmbeddings(folder_id="bar"),
YandexGPTEmbeddings(
query_model_uri="emb://bar/text-search-query/latest",
doc_model_uri="emb://bar/text-search-doc/latest",
),
YandexGPTEmbeddings(
folder_id="bar",
query_model_name="text-search-query",
doc_model_name="text-search-doc",
),
]
for embeddings in models:
assert embeddings.model_uri == "emb://bar/text-search-query/latest"
assert embeddings.doc_model_uri == "emb://bar/text-search-doc/latest"
assert embeddings.model_name == "text-search-query"
assert embeddings.doc_model_name == "text-search-doc"