mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
community[patch]: Fix YandexGPT embeddings (#19720)
Fix of YandexGPT embeddings. The current version uses a single `model_name` for queries and documents, essentially making the `embed_documents` and `embed_query` methods the same. Yandex has a different endpoint (`model_uri`) for encoding documents, see [this](https://yandex.cloud/en/docs/yandexgpt/concepts/embeddings). The bug may impact retrievers built with `YandexGPTEmbeddings` (for instance FAISS database as retriever) since they use both `embed_documents` and `embed_query`. A simple snippet to test the behaviour: ```python from langchain_community.embeddings.yandex import YandexGPTEmbeddings embeddings = YandexGPTEmbeddings() q_emb = embeddings.embed_query('hello world') doc_emb = embeddings.embed_documents(['hello world', 'hello world']) q_emb == doc_emb[0] ``` The response is `True` with the current version and `False` with the changes I made. Twitter: @egor_krash --------- Co-authored-by: Bagatur <22008038+baskaryan@users.noreply.github.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
parent
4be7ca7b4c
commit
c8391d4ff1
@ -6,7 +6,7 @@ import time
|
||||
from typing import Any, Callable, Dict, List
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, SecretStr, root_validator
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||||
from tenacity import (
|
||||
before_sleep_log,
|
||||
@ -33,14 +33,13 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
|
||||
|
||||
To use the default model specify the folder ID in a parameter `folder_id`
|
||||
or in an environment variable `YC_FOLDER_ID`.
|
||||
Or specify the model URI in a constructor parameter `model_uri`
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings.yandex import YandexGPTEmbeddings
|
||||
embeddings = YandexGPTEmbeddings(iam_token="t1.9eu...", model_uri="emb://<folder-id>/text-search-query/latest")
|
||||
"""
|
||||
embeddings = YandexGPTEmbeddings(iam_token="t1.9eu...", folder_id=<folder-id>)
|
||||
""" # noqa: E501
|
||||
|
||||
iam_token: SecretStr = "" # type: ignore[assignment]
|
||||
"""Yandex Cloud IAM token for service account
|
||||
@ -48,12 +47,16 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
|
||||
api_key: SecretStr = "" # type: ignore[assignment]
|
||||
"""Yandex Cloud Api Key for service account
|
||||
with the `ai.languageModels.user` role"""
|
||||
model_uri: str = ""
|
||||
"""Model uri to use."""
|
||||
model_uri: str = Field(default="", alias="query_model_uri")
|
||||
"""Query model uri to use."""
|
||||
doc_model_uri: str = ""
|
||||
"""Doc model uri to use."""
|
||||
folder_id: str = ""
|
||||
"""Yandex Cloud folder ID"""
|
||||
model_name: str = "text-search-query"
|
||||
"""Model name to use."""
|
||||
doc_model_name: str = "text-search-doc"
|
||||
"""Doc model name to use."""
|
||||
model_name: str = Field(default="text-search-query", alias="query_model_name")
|
||||
"""Query model name to use."""
|
||||
model_version: str = "latest"
|
||||
"""Model version to use."""
|
||||
url: str = "llm.api.cloud.yandex.net:443"
|
||||
@ -63,6 +66,11 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
|
||||
sleep_interval: float = 0.0
|
||||
"""Delay between API requests"""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
allow_population_by_field_name = True
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that iam token exists in environment."""
|
||||
@ -89,12 +97,19 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
|
||||
values["_grpc_metadata"] = (
|
||||
("authorization", f"Api-Key {values['api_key'].get_secret_value()}"),
|
||||
)
|
||||
if values["model_uri"] == "" and values["folder_id"] == "":
|
||||
raise ValueError("Either 'model_uri' or 'folder_id' must be provided.")
|
||||
if not values["model_uri"]:
|
||||
|
||||
if not values.get("doc_model_uri"):
|
||||
if values["folder_id"] == "":
|
||||
raise ValueError("'doc_model_uri' or 'folder_id' must be provided.")
|
||||
values[
|
||||
"doc_model_uri"
|
||||
] = f"emb://{values['folder_id']}/{values['doc_model_name']}/{values['model_version']}" # noqa: E501
|
||||
if not values.get("model_uri"):
|
||||
if values["folder_id"] == "":
|
||||
raise ValueError("'model_uri' or 'folder_id' must be provided.")
|
||||
values[
|
||||
"model_uri"
|
||||
] = f"emb://{values['folder_id']}/{values['model_name']}/{values['model_version']}"
|
||||
] = f"emb://{values['folder_id']}/{values['model_name']}/{values['model_version']}" # noqa: E501
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
@ -118,7 +133,7 @@ class YandexGPTEmbeddings(BaseModel, Embeddings):
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
return _embed_with_retry(self, texts=[text])[0]
|
||||
return _embed_with_retry(self, texts=[text], embed_query=True)[0]
|
||||
|
||||
|
||||
def _create_retry_decorator(llm: YandexGPTEmbeddings) -> Callable[[Any], Any]:
|
||||
@ -146,7 +161,7 @@ def _embed_with_retry(llm: YandexGPTEmbeddings, **kwargs: Any) -> Any:
|
||||
return _completion_with_retry(**kwargs)
|
||||
|
||||
|
||||
def _make_request(self: YandexGPTEmbeddings, texts: List[str]): # type: ignore[no-untyped-def]
|
||||
def _make_request(self: YandexGPTEmbeddings, texts: List[str], **kwargs): # type: ignore[no-untyped-def]
|
||||
try:
|
||||
import grpc
|
||||
|
||||
@ -172,9 +187,14 @@ def _make_request(self: YandexGPTEmbeddings, texts: List[str]): # type: ignore[
|
||||
result = []
|
||||
channel_credentials = grpc.ssl_channel_credentials()
|
||||
channel = grpc.secure_channel(self.url, channel_credentials)
|
||||
# Use the query model if embed_query is True
|
||||
if kwargs.get("embed_query"):
|
||||
model_uri = self.model_uri
|
||||
else:
|
||||
model_uri = self.doc_model_uri
|
||||
|
||||
for text in texts:
|
||||
request = TextEmbeddingRequest(model_uri=self.model_uri, text=text)
|
||||
request = TextEmbeddingRequest(model_uri=model_uri, text=text)
|
||||
stub = EmbeddingsServiceStub(channel)
|
||||
res = stub.TextEmbedding(request, metadata=self._grpc_metadata) # type: ignore[attr-defined]
|
||||
result.append(list(res.embedding))
|
||||
|
24
libs/community/tests/unit_tests/embeddings/test_yandex.py
Normal file
24
libs/community/tests/unit_tests/embeddings/test_yandex.py
Normal file
@ -0,0 +1,24 @@
|
||||
import os
|
||||
|
||||
from langchain_community.embeddings import YandexGPTEmbeddings
|
||||
|
||||
|
||||
def test_init() -> None:
|
||||
os.environ["YC_API_KEY"] = "foo"
|
||||
models = [
|
||||
YandexGPTEmbeddings(folder_id="bar"),
|
||||
YandexGPTEmbeddings(
|
||||
query_model_uri="emb://bar/text-search-query/latest",
|
||||
doc_model_uri="emb://bar/text-search-doc/latest",
|
||||
),
|
||||
YandexGPTEmbeddings(
|
||||
folder_id="bar",
|
||||
query_model_name="text-search-query",
|
||||
doc_model_name="text-search-doc",
|
||||
),
|
||||
]
|
||||
for embeddings in models:
|
||||
assert embeddings.model_uri == "emb://bar/text-search-query/latest"
|
||||
assert embeddings.doc_model_uri == "emb://bar/text-search-doc/latest"
|
||||
assert embeddings.model_name == "text-search-query"
|
||||
assert embeddings.doc_model_name == "text-search-doc"
|
Loading…
Reference in New Issue
Block a user