Added support for streaming output response to HuggingFaceTextgenInference LLM class (#4633)

# Added support for streaming output response to
HuggingFaceTextgenInference LLM class

Current implementation does not support streaming output. Updated to
incorporate this feature. Tagging @agola11 for visibility.
This commit is contained in:
Daniel Barker 2023-05-15 09:59:12 -05:00 committed by GitHub
parent 435b70da47
commit c70ae562b4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,4 +1,5 @@
"""Wrapper around Huggingface text generation inference API."""
from functools import partial
from typing import Any, Dict, List, Optional
from pydantic import Extra, Field, root_validator
@ -36,6 +37,7 @@ class HuggingFaceTextGenInference(LLM):
Example:
.. code-block:: python
# Basic Example (no streaming)
llm = HuggingFaceTextGenInference(
inference_server_url = "http://localhost:8010/",
max_new_tokens = 512,
@ -45,6 +47,25 @@ class HuggingFaceTextGenInference(LLM):
temperature = 0.01,
repetition_penalty = 1.03,
)
print(llm("What is Deep Learning?"))
# Streaming response example
from langchain.callbacks import streaming_stdout
callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()]
llm = HuggingFaceTextGenInference(
inference_server_url = "http://localhost:8010/",
max_new_tokens = 512,
top_k = 10,
top_p = 0.95,
typical_p = 0.95,
temperature = 0.01,
repetition_penalty = 1.03,
callbacks = callbacks,
stream = True
)
print(llm("What is Deep Learning?"))
"""
max_new_tokens: int = 512
@ -57,6 +78,7 @@ class HuggingFaceTextGenInference(LLM):
seed: Optional[int] = None
inference_server_url: str = ""
timeout: int = 120
stream: bool = False
client: Any
class Config:
@ -97,22 +119,52 @@ class HuggingFaceTextGenInference(LLM):
else:
stop += self.stop_sequences
res = self.client.generate(
prompt,
stop_sequences=stop,
max_new_tokens=self.max_new_tokens,
top_k=self.top_k,
top_p=self.top_p,
typical_p=self.typical_p,
temperature=self.temperature,
repetition_penalty=self.repetition_penalty,
seed=self.seed,
)
# remove stop sequences from the end of the generated text
for stop_seq in stop:
if stop_seq in res.generated_text:
res.generated_text = res.generated_text[
: res.generated_text.index(stop_seq)
]
return res.generated_text
if not self.stream:
res = self.client.generate(
prompt,
stop_sequences=stop,
max_new_tokens=self.max_new_tokens,
top_k=self.top_k,
top_p=self.top_p,
typical_p=self.typical_p,
temperature=self.temperature,
repetition_penalty=self.repetition_penalty,
seed=self.seed,
)
# remove stop sequences from the end of the generated text
for stop_seq in stop:
if stop_seq in res.generated_text:
res.generated_text = res.generated_text[
: res.generated_text.index(stop_seq)
]
text = res.generated_text
else:
text_callback = None
if run_manager:
text_callback = partial(
run_manager.on_llm_new_token, verbose=self.verbose
)
params = {
"stop_sequences": stop,
"max_new_tokens": self.max_new_tokens,
"top_k": self.top_k,
"top_p": self.top_p,
"typical_p": self.typical_p,
"temperature": self.temperature,
"repetition_penalty": self.repetition_penalty,
"seed": self.seed,
}
text = ""
for res in self.client.generate_stream(prompt, **params):
token = res.token
is_stop = False
for stop_seq in stop:
if stop_seq in token.text:
is_stop = True
break
if is_stop:
break
if not token.special:
if text_callback:
text_callback(token.text)
return text