mirror of
https://github.com/hwchase17/langchain
synced 2024-11-18 09:25:54 +00:00
add dashscope text embedding (#5929)
#### What I do Adding embedding api for [DashScope](https://help.aliyun.com/product/610100.html), which is the DAMO Academy's multilingual text unified vector model based on the LLM base. It caters to multiple mainstream languages worldwide and offers high-quality vector services, helping developers quickly transform text data into high-quality vector data. Currently supported languages include Chinese, English, Spanish, French, Portuguese, Indonesian, and more. #### Who can review? Models - @hwchase17 - @agola11 --------- Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
parent
010d0bfeea
commit
bb7ac9edb5
83
docs/modules/models/text_embedding/examples/dashscope.ipynb
Normal file
83
docs/modules/models/text_embedding/examples/dashscope.ipynb
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# DashScope\n",
|
||||||
|
"\n",
|
||||||
|
"Let's load the DashScope Embedding class."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.embeddings import DashScopeEmbeddings"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"embeddings = DashScopeEmbeddings(model='text-embedding-v1', dashscope_api_key='your-dashscope-api-key')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"text = \"This is a test document.\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"query_result = embeddings.embed_query(text)\n",
|
||||||
|
"print(query_result)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"doc_results = embeddings.embed_documents([\"foo\"])\n",
|
||||||
|
"print(doc_results)"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "chatgpt",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.10.4"
|
||||||
|
},
|
||||||
|
"orig_nbformat": 4
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
@ -8,6 +8,7 @@ from langchain.embeddings.aleph_alpha import (
|
|||||||
)
|
)
|
||||||
from langchain.embeddings.bedrock import BedrockEmbeddings
|
from langchain.embeddings.bedrock import BedrockEmbeddings
|
||||||
from langchain.embeddings.cohere import CohereEmbeddings
|
from langchain.embeddings.cohere import CohereEmbeddings
|
||||||
|
from langchain.embeddings.dashscope import DashScopeEmbeddings
|
||||||
from langchain.embeddings.deepinfra import DeepInfraEmbeddings
|
from langchain.embeddings.deepinfra import DeepInfraEmbeddings
|
||||||
from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings
|
from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings
|
||||||
from langchain.embeddings.embaas import EmbaasEmbeddings
|
from langchain.embeddings.embaas import EmbaasEmbeddings
|
||||||
@ -61,6 +62,7 @@ __all__ = [
|
|||||||
"VertexAIEmbeddings",
|
"VertexAIEmbeddings",
|
||||||
"BedrockEmbeddings",
|
"BedrockEmbeddings",
|
||||||
"DeepInfraEmbeddings",
|
"DeepInfraEmbeddings",
|
||||||
|
"DashScopeEmbeddings",
|
||||||
"EmbaasEmbeddings",
|
"EmbaasEmbeddings",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
155
langchain/embeddings/dashscope.py
Normal file
155
langchain/embeddings/dashscope.py
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
"""Wrapper around DashScope embedding models."""
|
||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import (
|
||||||
|
Any,
|
||||||
|
Callable,
|
||||||
|
Dict,
|
||||||
|
List,
|
||||||
|
Optional,
|
||||||
|
)
|
||||||
|
|
||||||
|
from pydantic import BaseModel, Extra, root_validator
|
||||||
|
from requests.exceptions import HTTPError
|
||||||
|
from tenacity import (
|
||||||
|
before_sleep_log,
|
||||||
|
retry,
|
||||||
|
retry_if_exception_type,
|
||||||
|
stop_after_attempt,
|
||||||
|
wait_exponential,
|
||||||
|
)
|
||||||
|
|
||||||
|
from langchain.embeddings.base import Embeddings
|
||||||
|
from langchain.utils import get_from_dict_or_env
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def _create_retry_decorator(embeddings: DashScopeEmbeddings) -> Callable[[Any], Any]:
|
||||||
|
multiplier = 1
|
||||||
|
min_seconds = 1
|
||||||
|
max_seconds = 4
|
||||||
|
# Wait 2^x * 1 second between each retry starting with
|
||||||
|
# 1 seconds, then up to 4 seconds, then 4 seconds afterwards
|
||||||
|
return retry(
|
||||||
|
reraise=True,
|
||||||
|
stop=stop_after_attempt(embeddings.max_retries),
|
||||||
|
wait=wait_exponential(multiplier, min=min_seconds, max=max_seconds),
|
||||||
|
retry=(retry_if_exception_type(HTTPError)),
|
||||||
|
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def embed_with_retry(embeddings: DashScopeEmbeddings, **kwargs: Any) -> Any:
|
||||||
|
"""Use tenacity to retry the embedding call."""
|
||||||
|
retry_decorator = _create_retry_decorator(embeddings)
|
||||||
|
|
||||||
|
@retry_decorator
|
||||||
|
def _embed_with_retry(**kwargs: Any) -> Any:
|
||||||
|
resp = embeddings.client.call(**kwargs)
|
||||||
|
if resp.status_code == 200:
|
||||||
|
return resp.output["embeddings"]
|
||||||
|
elif resp.status_code in [400, 401]:
|
||||||
|
raise ValueError(
|
||||||
|
f"status_code: {resp.status_code} \n "
|
||||||
|
f"code: {resp.code} \n message: {resp.message}"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise HTTPError(
|
||||||
|
f"HTTP error occurred: status_code: {resp.status_code} \n "
|
||||||
|
f"code: {resp.code} \n message: {resp.message}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return _embed_with_retry(**kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
class DashScopeEmbeddings(BaseModel, Embeddings):
|
||||||
|
"""Wrapper around DashScope embedding models.
|
||||||
|
|
||||||
|
To use, you should have the ``dashscope`` python package installed, and the
|
||||||
|
environment variable ``DASHSCOPE_API_KEY`` set with your API key or pass it
|
||||||
|
as a named parameter to the constructor.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
from langchain.embeddings import DashScopeEmbeddings
|
||||||
|
embeddings = DashScopeEmbeddings(dashscope_api_key="my-api-key")
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
import os
|
||||||
|
os.environ["DASHSCOPE_API_KEY"] = "your DashScope API KEY"
|
||||||
|
|
||||||
|
from langchain.embeddings.dashscope import DashScopeEmbeddings
|
||||||
|
embeddings = DashScopeEmbeddings(
|
||||||
|
model="text-embedding-v1",
|
||||||
|
)
|
||||||
|
text = "This is a test query."
|
||||||
|
query_result = embeddings.embed_query(text)
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
client: Any #: :meta private:
|
||||||
|
model: str = "text-embedding-v1"
|
||||||
|
dashscope_api_key: Optional[str] = None
|
||||||
|
"""Maximum number of retries to make when generating."""
|
||||||
|
max_retries: int = 5
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
"""Configuration for this pydantic object."""
|
||||||
|
|
||||||
|
extra = Extra.forbid
|
||||||
|
|
||||||
|
@root_validator()
|
||||||
|
def validate_environment(cls, values: Dict) -> Dict:
|
||||||
|
import dashscope
|
||||||
|
|
||||||
|
"""Validate that api key and python package exists in environment."""
|
||||||
|
values["dashscope_api_key"] = get_from_dict_or_env(
|
||||||
|
values, "dashscope_api_key", "DASHSCOPE_API_KEY"
|
||||||
|
)
|
||||||
|
dashscope.api_key = values["dashscope_api_key"]
|
||||||
|
try:
|
||||||
|
import dashscope
|
||||||
|
|
||||||
|
values["client"] = dashscope.TextEmbedding
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError(
|
||||||
|
"Could not import dashscope python package. "
|
||||||
|
"Please install it with `pip install dashscope`."
|
||||||
|
)
|
||||||
|
return values
|
||||||
|
|
||||||
|
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||||
|
"""Call out to DashScope's embedding endpoint for embedding search docs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
texts: The list of texts to embed.
|
||||||
|
chunk_size: The chunk size of embeddings. If None, will use the chunk size
|
||||||
|
specified by the class.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of embeddings, one for each text.
|
||||||
|
"""
|
||||||
|
embeddings = embed_with_retry(
|
||||||
|
self, input=texts, text_type="document", model=self.model
|
||||||
|
)
|
||||||
|
embedding_list = [item["embedding"] for item in embeddings]
|
||||||
|
return embedding_list
|
||||||
|
|
||||||
|
def embed_query(self, text: str) -> List[float]:
|
||||||
|
"""Call out to DashScope's embedding endpoint for embedding query text.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
text: The text to embed.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Embedding for the text.
|
||||||
|
"""
|
||||||
|
embedding = embed_with_retry(
|
||||||
|
self, input=text, text_type="query", model=self.model
|
||||||
|
)[0]["embedding"]
|
||||||
|
return embedding
|
55
tests/integration_tests/embeddings/test_dashscope.py
Normal file
55
tests/integration_tests/embeddings/test_dashscope.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
"""Test dashscope embeddings."""
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from langchain.embeddings.dashscope import DashScopeEmbeddings
|
||||||
|
|
||||||
|
|
||||||
|
def test_dashscope_embedding_documents() -> None:
|
||||||
|
"""Test dashscope embeddings."""
|
||||||
|
documents = ["foo bar"]
|
||||||
|
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
||||||
|
output = embedding.embed_documents(documents)
|
||||||
|
assert len(output) == 1
|
||||||
|
assert len(output[0]) == 1536
|
||||||
|
|
||||||
|
|
||||||
|
def test_dashscope_embedding_documents_multiple() -> None:
|
||||||
|
"""Test dashscope embeddings."""
|
||||||
|
documents = ["foo bar", "bar foo", "foo"]
|
||||||
|
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
||||||
|
output = embedding.embed_documents(documents)
|
||||||
|
assert len(output) == 3
|
||||||
|
assert len(output[0]) == 1536
|
||||||
|
assert len(output[1]) == 1536
|
||||||
|
assert len(output[2]) == 1536
|
||||||
|
|
||||||
|
|
||||||
|
def test_dashscope_embedding_query() -> None:
|
||||||
|
"""Test dashscope embeddings."""
|
||||||
|
document = "foo bar"
|
||||||
|
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
||||||
|
output = embedding.embed_query(document)
|
||||||
|
assert len(output) == 1536
|
||||||
|
|
||||||
|
|
||||||
|
def test_dashscope_embedding_with_empty_string() -> None:
|
||||||
|
"""Test dashscope embeddings with empty string."""
|
||||||
|
import dashscope
|
||||||
|
|
||||||
|
document = ["", "abc"]
|
||||||
|
embedding = DashScopeEmbeddings(model="text-embedding-v1")
|
||||||
|
output = embedding.embed_documents(document)
|
||||||
|
assert len(output) == 2
|
||||||
|
assert len(output[0]) == 1536
|
||||||
|
expected_output = dashscope.TextEmbedding.call(
|
||||||
|
input="", model="text-embedding-v1", text_type="document"
|
||||||
|
).output["embeddings"][0]["embedding"]
|
||||||
|
assert np.allclose(output[0], expected_output)
|
||||||
|
assert len(output[1]) == 1536
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_dashscope_embedding_documents()
|
||||||
|
test_dashscope_embedding_documents_multiple()
|
||||||
|
test_dashscope_embedding_query()
|
||||||
|
test_dashscope_embedding_with_empty_string()
|
Loading…
Reference in New Issue
Block a user